A new diffuse-interface approximation of the Willmore flow

被引:3
作者
Raetz, Andreas [1 ]
Roeger, Matthias [1 ]
机构
[1] TU Dortmund, Dept Math, Vogelpothsweg 87, D-44227 Dortmund, Germany
关键词
Free boundary problem; Willmore flow; phase-field model; diffuse interface; finite elements;
D O I
10.1051/cocv/2021013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Standard diffuse approximations of the Willmore flow often lead to intersecting phase boundaries that in many cases do not correspond to the intended sharp interface evolution. Here we introduce a new two-variable diffuse approximation that includes a rather simple but efficient penalization of the deviation from a quasi-one dimensional structure of the phase fields. We justify the approximation property by a Gamma convergence result for the energies and a matched asymptotic expansion for the flow. Ground states of the energy are shown to be one-dimensional, in contrast to the presence of saddle solutions for the usual diffuse approximation. Finally we present numerical simulations that illustrate the approximation property and apply our new approach to problems where the usual approach leads to an undesired behavior.
引用
收藏
页数:28
相关论文
共 54 条
[1]  
Alessio F., 2007, Ad. Differ. Equ., V12, P361
[2]   A parametric finite element method for fourth order geometric evolution equations [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 222 (01) :441-467
[3]   Numerical approximation of gradient flows for closed curves in Rd [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (01) :4-60
[4]   PARAMETRIC APPROXIMATION OF WILLMORE FLOW AND RELATED GEOMETRIC EVOLUTION EQUATIONS [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 31 (01) :225-253
[5]   Finite element approximation of a phase field model for void electromigration [J].
Barrett, JW ;
Nürnberg, R ;
Styles, V .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :738-772
[6]  
Bellettini G, 2007, J CONVEX ANAL, V14, P543
[7]   On the approximation of the elastica functional in radial symmetry [J].
Bellettini, G ;
Mugnai, L .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (01) :1-20
[8]   Characterization and representation of the lower semicontinuous envelope of the elastica functional [J].
Bellettini, G ;
Mugnai, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (06) :839-880
[9]  
Bellettini G., 1993, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), V20, P247
[10]  
Bellettini G., 1995, REND ACCAD NAZ SCI 4, V19, P43