New insights into the vertical distribution and microbial degradation of microplastics in urban river sediments

被引:209
作者
Niu, Lihua [1 ]
Li, Yuanyuan [1 ]
Li, Yi [1 ]
Hu, Qing [2 ]
Wang, Chao [2 ]
Hu, Jiaxin [1 ]
Zhang, Wenlong [1 ]
Wang, Longfei [1 ]
Zhang, Chi [3 ]
Zhang, Huanjun [1 ]
机构
[1] Hohai Univ, Coll Environm, Minist Educ, Key Lab Integrated Regulat & Resource Dev Shallow, Xikang Rd 1, Nanjing 210098, Peoples R China
[2] Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China
[3] Hohai Univ, Coll Mech & Mat, Xikang Rd 1, Nanjing 210098, Peoples R China
基金
中国国家自然科学基金;
关键词
vertical sediment; microplastic size; biodegradation; stability; contact angle measurement; MARINE-ENVIRONMENT; POLLUTION; WATER; BIODEGRADATION; COMMUNITIES; PSEUDOMONAS; BACILLUS; PLASTICS; VECTOR; FATE;
D O I
10.1016/j.watres.2020.116449
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sediments have been found to be one of the most important reservoirs for microplastics, providing abundant indigenous microbes. The processes involved in the distribution and degradation behavior of microplastics are complex. This study investigated the vertical distribution of microplastics (with the size < 5 mm) and the bacterial community assemblages colonizing microplastics in urban river sediments at a depth from 0 to 50 cm. The results showed that both microplastics and associated microbial communities presented vertical profiles in river sediments. The mean concentration of microplastics increased from the shallow layers to the deep layers of sediments, and smaller microplastic particles were dominant in deeper layers. A greater degradation of microplastics in deeper layers was confirmed by contact angle measurements, scanning electron microscopy and Fourier transform infrared spectroscopy-attenuated total reflectance analyses. Unlike the surrounding sediments, the whole bacterial communities on microplastics exhibited higher frequency of positive correlations in the bacterial co-occurrence network, which indicated a less stability of bacterial communities on microplastics. The indicative plastic-degrading bacteria with an average abundance of 4.33% was found in the surrounding sediments, while on the microplastics 21.37% was found. From shallow layers to deep layers, the indicative plastic-degrading bacteria significantly increased both in the abundance and in their betweenness centrality in the co-occurrence network, which suggested a potentially primary role of these bacteria in the degradation of microplastics in deep layers. This study provides new insight into the vertical distribution and the potential microbial degrading characteristics of microplastics in urban river sediments, which expanded our understanding of the fate of microplastics in aquatic environments. The observed results implied a great risk that microplastics might become smaller and more in deepened sediments and finally migrate into groundwater. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 99 条
[1]   Bacterial polyhydroxybutyrate for electrospun fiber production [J].
Acevedo, Francisca ;
Villegas, Pamela ;
Urtuvia, Viviana ;
Hermosilla, Jeyson ;
Navia, Rodrigo ;
Seeger, Michael .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 106 :692-697
[2]  
Amal A H., 2015, Mesopotamia Environmental Journal, V4, P1
[3]   Microplastics in the marine environment [J].
Andrady, Anthony L. .
MARINE POLLUTION BULLETIN, 2011, 62 (08) :1596-1605
[4]  
[Anonymous], 2019, WATER SUI, DOI DOI 10.3390/W11102129
[5]   Synergistic growth of Bacillus and Pseudomonas and its degradation potential on pretreated polypropylene [J].
Aravinthan, Adithan ;
Arkatkar, Ambika ;
Juwarkar, Asha A. ;
Doble, Mukesh .
PREPARATIVE BIOCHEMISTRY & BIOTECHNOLOGY, 2016, 46 (02) :109-115
[6]   Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation [J].
Auta, H. S. ;
Emenike, C. U. ;
Fauziah, S. H. .
ENVIRONMENTAL POLLUTION, 2017, 231 :1552-1559
[7]   Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions [J].
Auta, H. S. ;
Emenike, C. U. ;
Fauziah, S. H. .
ENVIRONMENT INTERNATIONAL, 2017, 102 :165-176
[8]  
Azeko S. T., 2016, Advanced Materials Research, V1132, P238, DOI 10.4028/www.scientific.net/AMR.1132.238
[9]   Using network analysis to explore co-occurrence patterns in soil microbial communities [J].
Barberan, Albert ;
Bates, Scott T. ;
Casamayor, Emilio O. ;
Fierer, Noah .
ISME JOURNAL, 2012, 6 (02) :343-351
[10]   The role of fungi in heterogeneous sediment microbial networks [J].
Booth, Jenny Marie ;
Fusi, Marco ;
Marasco, Ramona ;
Michoud, Gregoire ;
Fodelianakis, Stilianos ;
Merlino, Giuseppe ;
Daffonchio, Daniele .
SCIENTIFIC REPORTS, 2019, 9 (1)