Effects of injection timing and rail pressure on particulate size-number distribution of a common rail DI engine fueled with fischer-tropsch diesel synthesized from coal

被引:52
作者
Geng, Limin [1 ]
Xiao, Yonggang [1 ]
Li, Shijie [1 ]
Chen, Hao [1 ]
Chen, Xubo [2 ]
机构
[1] Changan Univ, Sch Automobile, Xian 710064, Peoples R China
[2] Chongqing Vehicle Test & Res Inst Co, Chongqing 401122, Peoples R China
关键词
Injection timing; Rail pressure; Coal-based F-T diesel; Particulate emissions; Number concentration; Size distribution;
D O I
10.1016/j.joei.2020.08.008
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The use of coal-based F-T diesel in automobiles can alleviate the shortage of petroleum and promote clean utilization of coal. In this study, the effects of injection timing and rail pressure on the emissions of NOx, soot, and UFPs from F-T diesel and petro-diesel were investigated in a common rail DI engine under a constant speed and various loads. The rail pressures are selected as 70 MPa and 100 MPa, whereas the injection timings are regulated at 2 degrees CA, 6 degrees CA, 10 degrees CA, 14 degrees CA, and 18 degrees CA BTDC. Experimental results indicate that advancing the injection timing or increasing the rail pressure shall result in higher NOx and lower soot emissions. When the fuel injection timing was advanced from 2 degrees CA to 18 degrees CA BTDC, the number concentration of UFPs first decreased and then increased at low loads, whereas the number concentration of UFPs always decreased at medium and high loads, the peak number concentration transferred from the size range of accumulation mode particles to that of nucleation mode particles, and the geometric mean diameters of UFPs emitted by the F-T diesel and petro-diesel reduced by an average of 23.4% and 26.19% under different test conditions, respectively. In addition, when the rail pressure was increased from 70 MPa to 100 MPa, the number concentration of UFPs of F-T diesel and petro-diesel decreased by 39.78% and 53.75%, and their geometric mean diameters of UFPs decreased by 14.09% and 12.5%, respectively. Compared to petro-diesel, F-T diesel has a lower number concentration of UFPs, smaller geometric mean diameter of UFPs, and a higher ratio of nucleation mode particles. With regard to the lowest number concentration of UFPs, when coal-based F-T diesel is used, the injection timing of the original engine can be advanced by 4-8 degrees CA at low loads. (C) 2020 Energy Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:219 / 230
页数:12
相关论文
共 48 条
[1]   Effect of fuel injection pressure and injection timing on spray characteristics and particulate size-number distribution in a biodiesel fuelled common rail direct injection diesel engine [J].
Agarwal, Avinash Kumar ;
Dhar, Atul ;
Gupta, Jai Gopal ;
Kim, Woong Il ;
Lee, Chang Sik ;
Park, Sungwook .
APPLIED ENERGY, 2014, 130 :212-221
[2]   Effect of fuel injection timing and pressure on combustion, emissions and performance characteristics of a single cylinder diesel engine [J].
Agarwal, Avinash Kumar ;
Srivastava, Dhananjay Kumar ;
Dhar, Atul ;
Maurya, Rakesh Kumar ;
Shukla, Pravesh Chandra ;
Singh, Akhilendra Pratap .
FUEL, 2013, 111 :374-383
[3]   Comparative study of regulated and unregulated gaseous emissions during NEDC in a light-duty diesel engine fuelled with Fischer Tropsch and biodiesel fuels [J].
Bermudez, Vicente ;
Lujan, Jose M. ;
Pla, Benjamin ;
Linares, Waldemar G. .
BIOMASS & BIOENERGY, 2011, 35 (02) :789-798
[4]  
Bockhrom H., 2013, SOOT FORMATION COMBU
[5]   Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine [J].
Chen, Hao ;
Su, Xin ;
Li, Junhui ;
Zhong, Xianglin .
ENERGY, 2019, 171 :981-999
[6]   Investigation on combustion and emission characteristics of a common rail diesel engine fueled with diesel/n-pentanol/methanol blends [J].
Chen, Hao ;
Su, Xin ;
He, Jingjing ;
Xie, Bin .
ENERGY, 2019, 167 (297-311) :297-311
[7]   Engine combustion and emission fuelled with natural gas: A review [J].
Chen, Hao ;
He, Jingjing ;
Zhong, Xianglin .
JOURNAL OF THE ENERGY INSTITUTE, 2019, 92 (04) :1123-1136
[8]   NOx emission of biodiesel compared to diesel: Higher or lower? [J].
Chen, Hao ;
Xie, Bin ;
Ma, Jinqiu ;
Chen, Yisong .
APPLIED THERMAL ENGINEERING, 2018, 137 :584-593
[9]   Potential improvement in particulate matter's emissions reduction from diesel engine by addition of PODE and injection parameters [J].
Chen, Hui ;
Huang, Rong ;
Huang, Haozhong ;
Pan, Mingzhang ;
Teng, Wenwen .
APPLIED THERMAL ENGINEERING, 2019, 150 :591-604
[10]   Effects of current engine strategies on the exhaust aerosol particle size distribution from a Heavy-Duty Diesel Engine [J].
Desantes, JM ;
Bermúdez, V ;
García, JM ;
Fuentes, E .
JOURNAL OF AEROSOL SCIENCE, 2005, 36 (10) :1251-1276