On isometric extension problem between two unit spheres

被引:70
作者
Ding GuangGui [1 ,2 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2009年 / 52卷 / 10期
基金
中国国家自然科学基金;
关键词
normed space; isometric extension; isometric mapping; 1-Lipschitz mapping; BANACH-SPACE; L-INFINITY;
D O I
10.1007/s11425-009-0156-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce the isometric extension problem of isometric mappings between two unit spheres. Some important results of the related problems are outlined and the recent progress is mentioned.
引用
收藏
页码:2069 / 2083
页数:15
相关论文
共 31 条
[1]   Isometries on unit sphere of (lβn) [J].
An, GM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 301 (01) :249-254
[2]  
BANACH S, 1932, THEORIE PPERATIONS L
[3]  
Day M. M., 1973, Normed Linear Spaces
[4]  
DING G, 2009, ACTA MATH IN PRESS
[5]  
DING G, ISOMETRICALLY UNPUB
[6]   On the extension of isometries between unit spheres of E and C(Ω) [J].
Ding, GG .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2003, 19 (04) :793-800
[7]   The 1-Lipschitz mapping between the unit spheres of two Hilbert spaces can be extended to a real linear isometry of the whole space [J].
Ding, GG .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2002, 45 (04) :479-483
[8]   The Representation Theorem of onto Isometric Mappings between Two Unit Spheres of l1(Γ) Type Spaces and The Application to the Isometric Extension Problem [J].
Ding, Guang Gui .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (06) :1089-1094
[9]   The isometric extension of the into mapping from a L∞(Γ)-type space to some Banach space [J].
Ding, Guang-Gui .
ILLINOIS JOURNAL OF MATHEMATICS, 2007, 51 (02) :445-453
[10]  
FANG X, 2009, J MATH RES IN PRESS