A nonparametric sequential data assimilation scheme for soil moisture flow

被引:9
作者
Wang, Yakun [1 ]
Shi, Liangsheng [1 ]
Xu, Tianfang [2 ]
Zhang, Qiuru [1 ]
Ye, Ming [3 ]
Zha, Yuanyuan [1 ]
机构
[1] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Hubei, Peoples R China
[2] Arizona State Univ, Sch Sustainable Engn & Built Environm, Tempe, AZ 85287 USA
[3] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA
基金
中国国家自然科学基金;
关键词
Nonparametric data assimilation; Gaussian process; Soil moisture; Model error; HYDROLOGIC DATA ASSIMILATION; ENSEMBLE KALMAN FILTER; MULTIMODEL ENSEMBLES; ERROR; QUANTIFICATION; IMPLEMENTATION; UNCERTAINTY; CALIBRATION; COVARIANCE; RATIONALE;
D O I
10.1016/j.jhydrol.2020.125865
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Various of data assimilation methods such as the ensemble Kalman filter (EnKF) have been established in physical science and engineering for the fusion of observed data with physically motivated models. However, there are cases where a physically motivated model is not available. In particular, the unsaturated flow model is often difficult to build due to the intrinsic nonlinearity and heterogeneity of soil flow process. In this paper, a nonparametric sequential data assimilation scheme (Kalman-GP) is introduced based on the filtering equations of EnKF and data-driven modeling with Gaussian process (GP). The method replaces the physical model with GP constructed directly from available multiple-source data and observations of state variables of interest, while using the Kalman update formulation to reconcile real-time observations. We tested the proposed Kalman-GP method in a real-world case study of soil moisture profile simulation. The performance of Kalman-GP was compared with two different data assimilation methods, i.e. the traditional EnKF with a physical model (Kalman-physics) and a hybrid filter which integrated a dynamic GP error model into physics-based EnKF (Kalman-physics-GP, Zhang et al., 2019). Results showed that, without knowledge of any governing equation, the Kalman-GP filter was able to reconstruct soil moisture dynamics to a level comparable with the parametric EnKF, even exhibit superior performance. The Kalman-physics-GP led to a better soil moisture estimation than Kalman-GP, however at the expense of dependence on the underlying physical model and more requirements of prior knowledge. In contrast, the proposed Kalman-GP requires only easy-to-obtain meteorological data and can be a better alternative to achieve good tradeoff between effectiveness and efficiency, especially in areas short of hydrogeological data. When less prior physical knowledge is available, the advantage of the proposed Kalman-GP over the Kalman-Physics was enhanced, while the superiority of the hybrid filter over the Kalman-GP was weakened.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A gradient-enhanced sequential nonparametric data assimilation framework for soil moisture flow
    Wang, Yakun
    Shi, Liangsheng
    Zhang, Qiuru
    Qiao, Han
    JOURNAL OF HYDROLOGY, 2021, 603
  • [2] A dynamic data-driven method for dealing with model structural error in soil moisture data assimilation
    Zhang, Qiuru
    Shi, Liangsheng
    Holzman, Mauro
    Ye, Ming
    Wang, Yakun
    Carmona, Facundo
    Zha, Yuanyuan
    ADVANCES IN WATER RESOURCES, 2019, 132
  • [3] Nonparametric Data Assimilation Scheme for Land Hydrological Applications
    Khaki, M.
    Hamilton, F.
    Forootan, E.
    Hoteit, I.
    Awange, J.
    Kuhn, M.
    WATER RESOURCES RESEARCH, 2018, 54 (07) : 4946 - 4964
  • [4] Immune Evolution Particle Filter for Soil Moisture Data Assimilation
    Ju, Feng
    An, Ru
    Sun, Yaxing
    WATER, 2019, 11 (02)
  • [5] Evaluation of Model Parameter Convergence when Using Data Assimilation for Soil Moisture Estimation
    Dumedah, Gift
    Walker, Jeffrey P.
    JOURNAL OF HYDROMETEOROLOGY, 2014, 15 (01) : 359 - 375
  • [6] The Impact of Satellite Soil Moisture Data Assimilation on the Hydrological Modeling of SWAT in a Highly Disturbed Catchment
    Liu, Yongwei
    Cui, Wei
    Ling, Zhe
    Fan, Xingwang
    Dong, Jianzhi
    Luan, Chengmei
    Wang, Rong
    Wang, Wen
    Liu, Yuanbo
    REMOTE SENSING, 2024, 16 (02)
  • [7] Ensemble Kalman smoother for soil moisture data assimilation
    Chu, Nan
    Huang, Chunlin
    Du, Peijun
    Shuikexue Jinzhan/Advances in Water Science, 2015, 26 (02): : 243 - 249
  • [8] Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall-runoff model
    Aubert, D
    Loumagne, C
    Oudin, L
    JOURNAL OF HYDROLOGY, 2003, 280 (1-4) : 145 - 161
  • [9] Spatiotemporal estimation of model error to improve soil moisture analysis in ensemble Kalman filter data assimilation
    Li, Yize
    Lu, Jianzhong
    Shu, Hong
    Geng, Xiaomeng
    Jiang, Haonan
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (03)
  • [10] ADAPTIVE FILTERING FOR (SOIL MOISTURE) DATA ASSIMILATION
    Gruber, Alexander
    de Lannoy, Gabrielle
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 3924 - 3927