Discrete fractional Fourier transform algorithm via fractional domain decomposition

被引:0
|
作者
Ma Shiwei [1 ]
Liu Zhongjie [1 ]
机构
[1] Shanghai Univ, Shanghai Key Lab, Power Stn Automat Technol, Sch Mechatron Engn & Automat, Shanghai 200072, Peoples R China
来源
Proceedings of the First International Symposium on Test Automation & Instrumentation, Vols 1 - 3 | 2006年
关键词
fractional Fourier transform; discrete fractional Fourier transform; discrete Fourier transform; multi-component signal;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An algorithm of discrete fractional Fourier transform (DFRFT) using fractional domain decomposition is proposed. With this method, the DFRFT of a signal at any fractional domain can be obtained by a weighted linear summation of its DFRFTs at certain special fractional domains. The weighting coefficients are calculated by an IDFT computation of a series consisted of DFT Hermite eigenvalues with appended zeros. Theoretic analysis and numerical simulation results indicate that this method not only derives similar results as the comentional eigenvector based DFRFT method. but also reduces computational burdens efficiently in searching optimal fractional domain. It can be used for multi-component signal detection and filtering in fractional Fourier domains.
引用
收藏
页码:78 / 82
页数:5
相关论文
共 50 条
  • [1] Method for the discrete fractional Fourier transform computation
    Yeh, MH
    Pei, SC
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (03) : 889 - 891
  • [2] Discrete fractional Fourier transform: Vandermonde approach
    Moya-Cessa, Hector M.
    Soto-Eguibar, Francisco
    IMA JOURNAL OF APPLIED MATHEMATICS, 2018, 83 (06) : 908 - 916
  • [3] Random Discrete Fractional Fourier Transform
    Pei, Soo-Chang
    Hsue, Wen-Liang
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (12) : 1015 - 1018
  • [4] A novel discrete fractional Fourier transform
    Tao, R
    Ping, XJ
    Shen, Y
    Zhao, XH
    2001 CIE INTERNATIONAL CONFERENCE ON RADAR PROCEEDINGS, 2001, : 1027 - 1030
  • [5] On the angular decomposition technique for computing the discrete fractional Fourier transform
    Hanna, Magdy Tawfik
    2007 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, 2007, : 3988 - 3991
  • [6] Discrete fractional Fourier transform based on orthogonal projections
    Pei, SC
    Yeh, MH
    Tseng, CC
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (05) : 1335 - 1348
  • [7] The discrete fractional Fourier transform and its simulation
    Ran, QW
    Feng, YJ
    Wang, JZ
    Wu, QT
    CHINESE JOURNAL OF ELECTRONICS, 2000, 9 (01): : 70 - 75
  • [8] THE ANALYSIS OF THE DISCRETE FRACTIONAL FOURIER TRANSFORM ALGORITHMS
    Ran, Qi-Wen
    Zhang, Hai-Ying
    Zhang, Zhong-Zhao
    Sha, Xue-Jun
    2009 IEEE 22ND CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1 AND 2, 2009, : 689 - 692
  • [9] The hopping discrete fractional Fourier transform
    Liu, Yu
    Zhang, Feng
    Miao, Hongxia
    Tao, Ran
    SIGNAL PROCESSING, 2021, 178
  • [10] RATIONAL-ORDERED DISCRETE FRACTIONAL FOURIER TRANSFORM
    Hsue, Wen-Liang
    Pei, Soo-Chang
    2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 2124 - 2127