GENERALIZED SPLIT FEASIBILITY PROBLEMS AND STRONG CONVERGENCE THEOREMS IN HILBERT SPACES

被引:0
|
作者
Hojo, Mayumi [1 ]
Plubtieng, Somyot [2 ]
Takahashi, Wataru [3 ,4 ,5 ]
机构
[1] Shibaura Inst Technol, Tokyo 1358548, Japan
[2] Naresuan Univ, Fac Sci, Dept Math, Muang 65000, Phitsanulok, Thailand
[3] Kaohsiung Med Univ, Ctr Fundamental Sci, Kaohsiung 80702, Taiwan
[4] Keio Univ, Keio Res & Educ Ctr Nat Sci, Kouhoku Ku, Yokohama, Kanagawa 2238521, Japan
[5] Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2016年 / 12卷 / 01期
基金
日本学术振兴会;
关键词
maximal monotone operator; inverse strongly monotone mapping; fixed point; strong convergence theorem; equilibrium problem; split feasibility problem; strict pseudo-contraction; NULL POINT PROBLEM; NONEXPANSIVE-MAPPINGS; EQUILIBRIUM PROBLEMS; MONOTONE MAPPINGS; FIXED-POINTS; OPERATORS; WEAK; APPROXIMATION;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, motivated by ideas of the split feasibility problem and the split common null point problem and results for solving the problems, we consider generalized split feasibility problems and then establish two strong convergence theorems which are related to the problems. As applications, we get new strong convergence theorems which are connected with fixed point problems, generalized split feasibility problems and equilibrium problems.
引用
收藏
页码:101 / 118
页数:18
相关论文
共 50 条