Vanishing shear viscosity in the equations of compressible fluids for the flows with the cylinder symmetry

被引:53
作者
Frid, H
Shelukhin, V
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, Brazil
[2] MA Lavrentyev Hydrodynam Inst, Novosibirsk 630090, Russia
关键词
Navier-Stokes equations; compressible fluids; vanishing shear viscosity;
D O I
10.1137/S003614109834394X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the question of the limit process when the shear viscosity goes to zero for global solutions to the Navier Stokes equations for compressible heat conductive fluids for the flows which are invariant over cylindrical sheets.
引用
收藏
页码:1144 / 1156
页数:13
相关论文
共 17 条
[1]  
ANTONTSEV SN, 1990, BOUNDARY VALUE PROBL
[2]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[3]   GLOBAL-SOLUTIONS OF THE NAVIER-STOKES EQUATIONS FOR MULTIDIMENSIONAL COMPRESSIBLE FLOW WITH DISCONTINUOUS INITIAL DATA [J].
HOFF, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 120 (01) :215-254
[4]  
KAZHIKHOV AV, 1977, PMM-J APPL MATH MEC+, V41, P273
[5]  
KAZHIKHOV AV, 1996, CURRENT PROBLEMS MOD, V2, P51
[6]  
Landau L. D., 1959, Fluid Mechanics
[7]  
Lions P.L, 1996, Mathematical Topics in Fluid Mechanics, Vol. I: Incompressible Models, VI
[8]  
NIKOLAEV VB, 1980, DINAMIKA SPLOSHN SRE, V44, P83
[9]   A COMPACTNESS LEMMA FOR QUASI-LINEAR PROBLEMS - APPLICATION TO PARABOLIC EQUATIONS [J].
RAKOTOSON, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 106 (02) :358-374
[10]  
ROSENHEAD L, 1954, P ROY SOC LOND A MAT, V226, P1