Kaluza-Klein theory as a dynamics in a dual geometry

被引:8
|
作者
Gershon, Avi [1 ]
Horwitz, Lawrence [1 ,2 ,3 ]
机构
[1] Tel Aviv Univ, Sch Phys, IL-68878 Ramat Aviv, Israel
[2] Coll Judea & Samaria, Dept Phys, IL-40700 Ariel, Israel
[3] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
关键词
differential geometry; Kaluza-Klein theory; LYAPUNOV EXPONENTS; HAMILTONIAN CHAOS; RELATIVITY; MECHANICS;
D O I
10.1063/1.3155853
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It has been shown that the orbits of motion for a wide class of nonrelativistic Hamiltonian systems can be described as geodesic flow on a manifold and an associated dual. This method can be applied to a four dimensional manifold of orbits in space-time associated with a relativistic system. One can study the consequences on the geometry of the introduction of electromagnetic interaction. We find that resulting geometrical structure in the dual space is that of Kaluza and Klein.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] FERMION DYNAMICS IN THE KALUZA-KLEIN MONOPOLE GEOMETRY
    BAIS, FA
    BATENBURG, P
    NUCLEAR PHYSICS B, 1984, 245 (03) : 469 - 480
  • [2] Nonlinear Kaluza-Klein theory for dual fields
    Godazgar, Hadi
    Godazgar, Mahdi
    Nicolai, Hermann
    PHYSICAL REVIEW D, 2013, 88 (12):
  • [3] ON THE GEOMETRY OF KALUZA-KLEIN THEORIES
    STRAUMANN, N
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1986, 37 (01): : 1 - 11
  • [4] ON KALUZA-KLEIN THEORY
    SALAM, A
    STRATHDEE, J
    ANNALS OF PHYSICS, 1982, 141 (02) : 316 - 352
  • [5] GEOMETRY OF KALUZA-KLEIN THEORY .1. BASIC SETTING
    MAIA, MD
    PHYSICAL REVIEW D, 1985, 31 (02): : 262 - 267
  • [6] KALUZA-KLEIN TYPE THEORY
    SUGAWARA, H
    LECTURE NOTES IN PHYSICS, 1983, 176 : 262 - 266
  • [7] THE NONSYMMETRIC KALUZA-KLEIN THEORY
    KALINOWSKI, MW
    JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (07) : 1835 - 1845
  • [8] Statistical entropy in Kaluza-Klein geometry
    Zhang, LH
    Zhao, R
    Wu, YQ
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2001, 116 (03): : 335 - 339
  • [9] A unimodular Kaluza-Klein theory
    Fabris, Julio C.
    Kerner, Richard
    PHYSICA SCRIPTA, 2024, 99 (08)
  • [10] SUPERSYMMETRIC KALUZA-KLEIN THEORY
    KERNER, R
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1983, 73 (03): : 309 - 326