Antioxidative response of ascorbate-glutathione pathway enzymes and metabolites to desiccation of recalcitrant Acer saccharinum seeds

被引:79
作者
Pukacka, Stanislawa [1 ]
Ratajczak, Ewelina [1 ]
机构
[1] Polish Acad Sci, Inst Dendrol, Seed Biochem Lab, PL-62035 Kornik, Poland
关键词
enzymatic; scavengers; hydrogen peroxide; silver maple; superoxide radical; viability;
D O I
10.1016/j.jplph.2005.10.003
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ascorbate-glutathione systems were studied during desiccation of recalcitrant seeds of the silver maple (Acer saccharinum L.). The desiccated seeds gradually lost their germination capacity and this was strongly correlated with an increase in electrolyte Leakage from seeds. Simultaneously the increase of reactive oxygen species (ROS) (superoxide radical - O-2(-center dot) and hydrogen peroxide - H2O2) production was observed. The results indicate that remarkable changes in the concentrations and redox status of ascorbate and glutathione occur in embryo axes and cotyledons. After shedding, concentrations of ascorbic acid (ASA) and the reduced form of glutathione (GSH) are higher in embryo axes than in cotyledons and their redox status is high in both embryo parts. Cotyledons in freshly shed seeds are devoid of GSH. At the first stages of desiccation, up to a Level. of 43% of moisture content, ASA content in embryo axes and GSH content in cotyledons increased. Below this level of moisture content, the antioxidant contents as well as their redox status rapidly decreased. The enzymes of the ascorbate-glutathione pathway: ascorbate peroxidase (APX) (EC 1.11.1.11) monodehydroascorbate reductase (MR) (EC 1.6.5.4), dehydroascorbate reductase (DHAR) (EC 1.8.5.1) and glutathione reductase (GR) (EC 1.6.4.2) increased their activity during desiccation, but mainly in embryonic axes. The changes are probably required for counteracting the production of ROS during desiccation. The relationship between ascorbate and glutathione metabolism and their relevance during desiccation of recalcitrant Acer saccharinum seeds is discussed. (c) 2005 Elsevier GmbH. All rights reserved.
引用
收藏
页码:1259 / 1266
页数:8
相关论文
共 33 条
[1]   Use of transgenic plants to study antioxidant defenses [J].
Allen, RD ;
Webb, RP ;
Schake, SA .
FREE RADICAL BIOLOGY AND MEDICINE, 1997, 23 (03) :473-479
[2]   CHANGES IN THE ASCORBATE SYSTEM DURING SEED DEVELOPMENT OF VICIA-FABA L [J].
ARRIGONI, O ;
DEGARA, L ;
TOMMASI, F ;
LISO, R .
PLANT PHYSIOLOGY, 1992, 99 (01) :235-238
[3]   Active oxygen species and antioxidants in seed biology [J].
Bailly, C .
SEED SCIENCE RESEARCH, 2004, 14 (02) :93-107
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   The ascorbic acid system in seeds: to protect and to serve [J].
De Tullio, MC ;
Arrigoni, O .
SEED SCIENCE RESEARCH, 2003, 13 (04) :249-260
[7]   SEASONAL-VARIATION OF GLUTATHIONE AND GLUTATHIONE REDUCTASE IN NEEDLES OF PICEA-ABIES [J].
ESTERBAUER, H ;
GRILL, D .
PLANT PHYSIOLOGY, 1978, 61 (01) :119-121
[8]   Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria [J].
Foyer, CH ;
Noctor, G .
PHYSIOLOGIA PLANTARUM, 2003, 119 (03) :355-364
[9]  
FOYER CH, 1997, PLANT CELL ENVIRON, V1717, P507
[10]   MICROCENTRIFUGE DESALTING - A RAPID, QUANTITATIVE METHOD FOR DESALTING SMALL AMOUNTS OF PROTEIN [J].
HELMERHORST, E ;
STOKES, GB .
ANALYTICAL BIOCHEMISTRY, 1980, 104 (01) :130-135