COMPUTING HIGHER FROBENIUS-SCHUR INDICATORS IN FUSION CATEGORIES CONSTRUCTED FROM INCLUSIONS OF FINITE GROUPS

被引:5
作者
Schauenburg, Peter [1 ]
机构
[1] Univ Bourgogne Franche Comte, Inst Math Bourgogne, CNRS, UMR 5584, F-21000 Dijon, France
关键词
fusion category; Frobenius-Schur indicator; QUASI-HOPF ALGEBRAS; CENTRAL INVARIANTS; EXTENSIONS; BIMODULES; DOUBLES;
D O I
10.2140/pjm.2016.280.177
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a subclass of the class of group-theoretical fusion categories: To every finite group G and subgroup H one can associate the category of G-graded vector spaces with a two-sided H-action compatible with the grading. We derive a formula that computes higher Frobenius-Schur indicators for the objects in such a category using the combinatorics and representation theory of the groups involved in their construction. We calculate some explicit examples for inclusions of symmetric groups.
引用
收藏
页码:177 / 201
页数:25
相关论文
共 27 条
[21]  
Schauenburg P, 2002, MATH SCI R, V43, P321
[22]   Hopf bimodules, coquasibialgebras, and an exact sequence of Kac [J].
Schauenburg, P .
ADVANCES IN MATHEMATICS, 2002, 165 (02) :194-263
[23]   The monoidal center construction and bimodules [J].
Schauenburg, P .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 158 (2-3) :325-346
[24]   A Higher Frobenius-Schur Indicator Formula for Group-Theoretical Fusion Categories [J].
Schauenburg, Peter .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 340 (02) :833-849
[25]   Frobenius-Schur indicators in Tambara-Yamagami categories [J].
Shimizu, Kenichi .
JOURNAL OF ALGEBRA, 2011, 332 (01) :543-564
[26]  
The GAP Group, 2014, GAP GROUPS ALG PROGR
[27]  
Zhu Y., 2001, AMS IP STUD ADV MATH, V20, P219