From microscopic to macroscopic models: Asymptotic analysis of the Broadwell model toward the wave equation

被引:2
作者
Bellouquid, A [1 ]
机构
[1] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
discrete Boltzmann equation; kinetic theory; asymptotic theory; wave equation;
D O I
10.1016/S0895-7177(02)00267-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
this paper deals with the asymptotic analysis of the Broadwell model towards the wave equation. Appropriately scaled solutions of the Broadwell model are shown to have fluctuations that locally in time converge weakly to a limit governed by a solution of wave equations provided that the initial fluctuations are smooth. The weak limit becomes strong when the initial fluctuations converge to appropriate initial data. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1169 / 1181
页数:13
相关论文
共 32 条
[1]   A kinetic multiscale model [J].
Babovsky, H .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2002, 12 (03) :309-331
[2]  
Bardos C., 1991, Mathematical Models & Methods in Applied Sciences, V1, P235, DOI 10.1142/S0218202591000137
[3]   FLUID DYNAMIC LIMITS OF KINETIC EQUATIONS-II CONVERGENCE PROOFS FOR THE BOLTZMANN-EQUATION [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, CD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (05) :667-753
[4]  
BARDOS C, 1989, CR ACAD SCI I-MATH, V309, P727
[5]  
Bellomo N., 1991, Reviews in Mathematical Physics, V3, P137, DOI 10.1142/S0129055X91000060
[6]  
BELLOMO N, 2002, LECT NOTES DISCRETIZ
[7]   The hydrodynamical limit of the non linear Boltzmann equation [J].
Bellouquid, A .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 1999, 28 (01) :57-82
[8]   The hydrodynamical limit of discrete kinetic equations [J].
Bellouquid, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (10) :951-956
[9]  
BELLOUQUID A, IN PRESS J NONLINEAR
[10]  
BELLOUQUID A, IN PRESS MATH MODELS