Regulation of the ndh gene of Escherichia coli by integration host factor and a novel regulator, Arr

被引:18
作者
Green, J
Anjum, MF
Guest, JR
机构
[1] Dept. of Molec. Biol. and Biotech., University of Sheffield, Sheffield S10 2TN, Firth Court, Western Bank
来源
MICROBIOLOGY-SGM | 1997年 / 143卷
基金
英国惠康基金;
关键词
Escherichia coli; ndh; IHF; amino acids; transcription regulation;
D O I
10.1099/00221287-143-9-2865
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The ndh gene of Escherichia coli encodes the non-proton-translocating NADH dehydrogenase II. Expression of the ndh gene is subject to a complex network of regulatory controls at the transcriptional level. Under anaerobic conditions ndh is repressed by the regulator of fumarate and nitrate reduction (FNR). However, in the absence of FNR, ndh expression is activated by the amino acid response regulator (Arr) during anaerobic growth in rich medium. Expression of the ndh gene varies during the growth cycle in response to the intracellular concentration of the heat-stable DNA-binding protein, Fis. In this work two additional heat-stable proteins, integration host factor (IHF) and the histonelike protein HU were found to interact with the ndh promoter. IHF was shown to bind at three sites centred at +26, -17 and -58 in the ndh promoter (K-d = 10(-8) M), to prevent open-complex formation and to repress ndh transcription in vitro. Studies with an ndh-lacZ fusion confirmed that IHF represses ndh expression in vivo. Two putative binding sites for Arr, which overlap the two FNR boxes in the ndh promoter, were identified. Studies with the FNR-activated and amino-acid-inducible asparaginase II gene (ansB) showed that IHF and a component of the Arr-containing fraction (but not HU) interact with the corresponding ansB promoter.
引用
收藏
页码:2865 / 2875
页数:11
相关论文
共 39 条
[1]   EXPRESSION OF THE GENES-CODING FOR THE ESCHERICHIA-COLI INTEGRATION HOST FACTOR ARE CONTROLLED BY GROWTH-PHASE, RPOS, PPGPP AND BY AUTOREGULATION [J].
AVIV, M ;
GILADI, H ;
SCHREIBER, G ;
OPPENHEIM, AB ;
GLASER, G .
MOLECULAR MICROBIOLOGY, 1994, 14 (05) :1021-1031
[2]   DRAMATIC CHANGES IN FIS LEVELS UPON NUTRIENT UPSHIFT IN ESCHERICHIA-COLI [J].
BALL, CA ;
OSUNA, R ;
FERGUSON, KC ;
JOHNSON, RC .
JOURNAL OF BACTERIOLOGY, 1992, 174 (24) :8043-8056
[3]   TRANSCRIPTIONAL REGULATION OF THE PROTON-TRANSLOCATING NADH DEHYDROGENASE GENES (NUOA-N) OF ESCHERICHIA-COLI BY ELECTRON-ACCEPTORS, ELECTRON-DONORS AND GENE REGULATORS [J].
BONGAERTS, J ;
ZOSKE, S ;
WEIDNER, U ;
UNDEN, G .
MOLECULAR MICROBIOLOGY, 1995, 16 (03) :521-534
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   DEMONSTRATION OF SEPARATE GENETIC-LOCI ENCODING DISTINCT MEMBRANE-BOUND RESPIRATORY NADH DEHYDROGENASES IN ESCHERICHIA-COLI [J].
CALHOUN, MW ;
GENNIS, RB .
JOURNAL OF BACTERIOLOGY, 1993, 175 (10) :3013-3019
[6]   ENERGETIC EFFICIENCY OF ESCHERICHIA-COLI - EFFECTS OF MUTATIONS IN COMPONENTS OF THE AEROBIC RESPIRATORY-CHAIN [J].
CALHOUN, MW ;
ODEN, KL ;
GENNIS, RB ;
DEMATTOS, MJT ;
NEIJSSEL, OM .
JOURNAL OF BACTERIOLOGY, 1993, 175 (10) :3020-3025
[7]   PRODUCTION OF L-ASPARAGINASE 2 BY ESCHERICHIA COLI [J].
CEDAR, H ;
SCHWARTZ, JH .
JOURNAL OF BACTERIOLOGY, 1968, 96 (06) :2043-&
[8]   THE ESCHERICHIA-COLI GAPA GENE IS TRANSCRIBED BY THE VEGETATIVE RNA-POLYMERASE HOLOENZYME E-SIGMA(70) AND BY THE HEAT-SHOCK RNA-POLYMERASE E-SIGMA(32) [J].
CHARPENTIER, B ;
BRANLANT, C .
JOURNAL OF BACTERIOLOGY, 1994, 176 (03) :830-839
[9]   ANAEROBIC ACTIVATION OF ARCA TRANSCRIPTION IN ESCHERICHIA-COLI - ROLES OF FNR AND ARCA [J].
COMPAN, I ;
TOUATI, D .
MOLECULAR MICROBIOLOGY, 1994, 11 (05) :955-964
[10]   ESCHERICHIA-COLI INTEGRATION HOST FACTOR BINDS TO SPECIFIC SITES IN DNA [J].
CRAIG, NL ;
NASH, HA .
CELL, 1984, 39 (03) :707-716