Computing elliptic membrane high frequencies by Mathieu and Galerkin methods

被引:24
作者
Wilson, Howard B.
Scharstein, Robert W.
机构
[1] Univ Alabama, Dept Elect Engn, Tuscaloosa, AL 35487 USA
[2] Univ Alabama, Dept Aerosp Engn, Tuscaloosa, AL 35487 USA
关键词
special functions; natural frequencies; waveguide modes; eigenvalues;
D O I
10.1007/s10665-006-9070-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Resonant modes of an elliptic membrane are computed for a wide range of frequencies using a Galerkin formulation. Results are confirmed using Mathieu functions and finite-element methods. Algorithms and their implementations are described to handle Dirichlet or Neumann boundary conditions and draw animations or contour plots of the modal surfaces. The methods agree to four or more digit accuracy for the first one hundred modes. The effects of high function order and high frequency parameter upon the convergence of the modified Mathieu function series are discussed and quantified. The Galerkin method is conceptually simple and requires only an eigenvalue solver without the need of special functions.
引用
收藏
页码:41 / 55
页数:15
相关论文
共 30 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS F
[2]  
Akulenko L. D., 2000, MECH SOLIDS, V35, P153
[3]   A complete method for the computations of Mathieu characteristic numbers of integer orders [J].
Alhargan, FA .
SIAM REVIEW, 1996, 38 (02) :239-255
[4]   Algorithms for the computation of all Mathieu functions of integer orders [J].
Alhargan, FA .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2000, 26 (03) :390-407
[5]   Algorithm 804: Subroutines for the computation of Mathieu functions of integer orders [J].
Alhargan, FA .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2000, 26 (03) :408-414
[6]   Whispering-gallery modes and resonances of an elliptic cavity [J].
Ancey, S ;
Folacci, A ;
Gabrielli, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (07) :1341-1359
[7]  
[Anonymous], 2005, SIMPLE FIELDS PHYS F
[8]  
[Anonymous], 1967, SIAM J NUMER ANAL, DOI [DOI 10.1137/0704008, 10.1137/0704008]
[9]  
Arfken G B, 2005, MATH METHODS PHYS
[10]   The discretized harmonic oscillator: Mathieu functions and a new class of generalized Hermite polynomials [J].
Aunola, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (05) :1913-1936