The Hele-Shaw flow as the sharp interface limit of the Cahn-Hilliard equation with disparate mobilities

被引:6
作者
Kroemer, Milan [1 ,2 ]
Laux, Tim [1 ]
机构
[1] Univ Bonn, Inst Appl Math, Hausdorff Ctr Math, Bonn, Germany
[2] Univ Bonn, Inst Appl Math, Hausdorff Ctr Math, Villa Maria,Endenicher Allee 62, D-53115 Bonn, Germany
关键词
Cahn-Hilliard equation; gradient flows; Hele-Shaw flow; Mullins-Sekerka equation; phase transitions; singular limit; Primary; Secondary; GRADIENT THEORY; CONVERGENCE;
D O I
10.1080/03605302.2022.2129384
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the sharp interface limit for solutions of the Cahn-Hilliard equation with disparate mobilities. This means that the mobility function degenerates in one of the two energetically favorable configurations, suppressing the diffusion in that phase. First, we construct suitable weak solutions to this Cahn-Hilliard equation. Second, we prove precompactness of these solutions under natural assumptions on the initial data. Third, under an additional energy convergence assumption, we show that the sharp interface limit is a distributional solution to the Hele-Shaw flow with optimal energy-dissipation rate.
引用
收藏
页码:2444 / 2486
页数:43
相关论文
共 26 条
[1]   CONVERGENCE OF THE CAHN-HILLIARD EQUATION TO THE HELE-SHAW MODEL [J].
ALIKAKOS, ND ;
BATES, PW ;
CHEN, XF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 128 (02) :165-205
[2]  
Alt HW, 2016, UNIVERSITEXT, P1, DOI 10.1007/978-1-4471-7280-2
[3]  
Ambrosio L, 2008, LECT MATH, P1
[4]  
Ambrosio L, 2007, HBK DIFF EQUAT EVOL, V3, P1, DOI 10.1016/S1874-5717(07)80004-1
[5]  
BOGOMOLNYI EB, 1976, SOV J NUCL PHYS+, V24, P449
[6]   MULLINS-SEKERKA AS THE WASSERSTEIN FLOW OF THE PERIMETER [J].
Chambolle, Antonin ;
Laux, Tim .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (07) :2943-2956
[7]  
Chen XF, 1996, J DIFFER GEOM, V44, P262
[8]   On the Cahn-Hilliard equation with degenerate mobility [J].
Elliott, CM ;
Garcke, H .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (02) :404-423
[9]  
Emmrich E, 1999, DISCRETE VERSIONS GR, V637
[10]  
Evans L.C., 2015, Textbooks in Mathematics, P299