The Modulus of Fibroblast-Populated Collagen Gels is not Determined by Final Collagen and Cell Concentration: Experiments and an Inclusion-Based Model

被引:28
作者
Evans, Michael C. [1 ]
Barocas, Victor H. [2 ]
机构
[1] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Dept Biomed Engn, Minneapolis, MN 55455 USA
来源
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME | 2009年 / 131卷 / 10期
基金
美国国家卫生研究院;
关键词
TISSUE-EQUIVALENT MECHANICS; ANISOTROPIC BIPHASIC THEORY; EXTRACELLULAR-MATRIX; MICROSPHERE ASSAY; TRACTION FORCE; CONTRACTION; ALIGNMENT; LATTICES; BIOMECHANICS; STRAIN;
D O I
10.1115/1.4000064
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The fibroblast-populated collagen lattice is an attractive model tissue for in vitro studies of cell behavior and as the basis for bioartificial tissues. In spite of its simplicity-containing only collagen and cells-the system is surprisingly difficult to describe mechanically because of the ability of the cells to remodel the matrix, including compaction at short times and synthesis and/or degradation (and cell proliferation) at longer times. The objectives of this work were to measure the equilibrium modulus of fibroblast-populated gels with different collagen and cell concentrations, and to use that characterization as the basis for a theoretical model that could be used to predict gel mechanics based on conditions. Although many observations were as expected (e. g., the gel compacts more when there are more cells in it, and the gel is stiffer when there is more collagen in it), an unexpected result arose: the final modulus of the gel was not dependent solely on the final composition. Even if it compacted more than a gel that was originally at a high collagen concentration, a gel that started at a low collagen concentration remained less stiff than the higher-concentration gel. In light of these results and experimental studies by others, we propose a model in which the gel compaction is not homogeneous but consists instead of extreme densification near the cells in an otherwise unchanged matrix. By treating the dense regions as spherical inclusions, we used classical composite material theory to develop an expression for the modulus of a compacted gel based on the initial collagen density and the final inclusion (i.e., cell) density. The new model fit the data for moderately compacted gels well but broke down, as expected, for larger volume fractions at which the underlying model assumptions did not apply. [DOI: 10.1115/1.4000064]
引用
收藏
页数:7
相关论文
共 35 条
[1]   THE FIBROBLAST-POPULATED COLLAGEN MICROSPHERE ASSAY OF CELL TRACTION FORCE .2. MEASUREMENT OF THE CELL TRACTION PARAMETER [J].
BAROCAS, VH ;
MOON, AG ;
TRANQUILLO, RT .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1995, 117 (02) :161-170
[2]   An anisotropic biphasic theory of tissue-equivalent mechanics: The interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance [J].
Barocas, VH ;
Tranquillo, RT .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1997, 119 (02) :137-145
[3]   A finite element solution for the anisotropic biphasic theory of tissue equivalent mechanics: The effect of contact guidance on isometric cell traction measurement [J].
Barocas, VH ;
Tranquillo, RT .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1997, 119 (03) :261-268
[4]   PRODUCTION OF A TISSUE-LIKE STRUCTURE BY CONTRACTION OF COLLAGEN LATTICES BY HUMAN-FIBROBLASTS OF DIFFERENT PROLIFERATIVE POTENTIAL INVITRO [J].
BELL, E ;
IVARSSON, B ;
MERRILL, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (03) :1274-1278
[5]   Enhanced fibroblast contraction of 3D collagen lattices and integrin expression by TGF-β1 and -β3:: Mechanoregulatory growth factors? [J].
Brown, RA ;
Sethi, KK ;
Gwanmesia, I ;
Raemdonck, D ;
Eastwood, M ;
Mudera, V .
EXPERIMENTAL CELL RESEARCH, 2002, 274 (02) :310-322
[6]   Microstructural mechanics of collagen gels in confined compression: Poroelasticity, viscoelasticity, and collapse [J].
Chandran, PL ;
Barocas, VH .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2004, 126 (02) :152-166
[7]   A NEW TECHNIQUE TO STUDY THE MECHANICAL-PROPERTIES OF COLLAGEN LATTICES [J].
CHAPUIS, JF ;
AGACHE, P .
JOURNAL OF BIOMECHANICS, 1992, 25 (01) :115-120
[8]  
EVANS MC, 2007, THESIS U MINNESOTA
[9]  
Friedl P, 1997, CANCER RES, V57, P2061
[10]   A fibrin-based arterial media equivalent [J].
Grassl, ED ;
Oegema, TR ;
Tranquillo, RT .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 66A (03) :550-561