A novel algorithm for nested summation and hypergeometric expansions

被引:6
作者
McLeod, Andrew J. [1 ]
Munch, Henrik Jessen [1 ,2 ]
Papathanasiou, Georgios [3 ]
von Hippel, Matt [1 ]
机构
[1] Niels Bohr Int Acad, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
[2] Univ Hamburg, Inst Theoret Phys 2, Luruper Chaussee 149, D-22761 Hamburg, Germany
[3] DESY Hamburg, DESY Theory Grp, Notkestr 85, D-22607 Hamburg, Germany
基金
欧洲研究理事会; 新加坡国家研究基金会;
关键词
NLO Computations; TRANSCENDENTAL FUNCTIONS; NUMERICAL EVALUATION; SYMBOLIC SUMMATION; MELLIN TRANSFORMS; HARMONIC SUMS; POLYLOGARITHMS; VALUES;
D O I
10.1007/JHEP11(2020)122
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider a class of sums over products of Z-sums whose arguments differ by a symbolic integer. Such sums appear, for instance, in the expansion of Gauss hypergeometric functions around integer indices that depend on a symbolic parameter. We present a telescopic algorithm for efficiently converting these sums into generalized polylogarithms, Z-sums, and cyclotomic harmonic sums for generic values of this parameter. This algorithm is illustrated by computing the double pentaladder integrals through ten loops, and a family of massive self-energy diagrams through O( epsilon 6) in dimensional regularization. We also outline the general telescopic strategy of this algorithm, which we anticipate can be applied to other classes of sums.
引用
收藏
页数:35
相关论文
共 106 条
[1]   Iterated binomial sums and their associated iterated integrals [J].
Ablinger, J. ;
Bluemlein, J. ;
Raab, C. G. ;
Schneider, C. .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (11)
[2]   Generalized Harmonic, Cyclotomic, and Binomial Sums, their Polylogarithms and Special Numbers [J].
Ablinger, J. ;
Bluemlein, J. ;
Schneider, C. .
15TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2013), 2014, 523
[3]  
Ablinger J, 2009, ARXIV10111176 LINZ U
[4]  
Ablinger J., ARXIV190211001
[5]  
Ablinger J., 2018, PoS LL2018, P063
[6]  
Ablinger J., 2012, THESIS
[7]  
Ablinger J., ARXIV150701703
[8]  
Ablinger J., 2014, POS LL2014
[9]  
Ablinger J., 2016, POS LL2016, V067, P2016
[10]  
Ablinger J., 2018, POS RADCOR2017