Two-dimensional steady edge waves. Part I: Periodic waves

被引:10
作者
Ehrnstroem, Mats [1 ]
Escher, Joachim [1 ]
Matioc, Bogdan-Vasile [1 ]
机构
[1] Leibniz Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
关键词
Existence; Uniqueness; A priori estimates; Water waves; Edge waves; Periodic solutions; DEEP-WATER WAVES; BOUNDARY-PROBLEM; CAMASSA-HOLM; SYMMETRY; TRAJECTORIES; EXISTENCE; BREAKING;
D O I
10.1016/j.wavemoti.2009.06.002
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We prove existence and uniqueness for two-dimensional steady water waves propagating along the beach. For small periodic shoreline data, global solutions vanishing in the seaward direction are found. In addition, we prove a priori properties of solutions, well-adapted to the physical background. (C) 2009 Elsevier B. V. All rights reserved.
引用
收藏
页码:363 / 371
页数:9
相关论文
共 37 条
[1]   ON THE STOKES CONJECTURE FOR THE WAVE OF EXTREME FORM [J].
AMICK, CJ ;
FRAENKEL, LE ;
TOLAND, JF .
ACTA MATHEMATICA, 1982, 148 :193-214
[2]  
[Anonymous], 1998, CLASSICS MATH
[3]  
Caflisch R., 1993, HYDRODYNAMICS
[4]   Symmetry of steady deep-water waves with vorticity [J].
Constantin, A ;
Escher, J .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2004, 15 :755-768
[5]   Symmetry of steady periodic surface water waves with vorticity [J].
Constantin, A ;
Escher, J .
JOURNAL OF FLUID MECHANICS, 2004, 498 :171-181
[6]   Exact steady periodic water waves with vorticity [J].
Constantin, A ;
Strauss, W .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (04) :481-527
[7]  
Constantin A, 1998, COMMUN PUR APPL MATH, V51, P475, DOI 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO
[8]  
2-5
[9]   Exact periodic traveling water waves with vorticity [J].
Constantin, A ;
Strauss, W .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (10) :797-800
[10]   Edge waves along a sloping beach [J].
Constantin, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (45) :9723-9731