N-solitons, breathers and rogue waves for a generalized Boussinesq equation

被引:48
作者
Ma, Yu-Lan [1 ]
机构
[1] Beijing Technol & Business Univ, Sch Sci, Beijing 100048, Peoples R China
关键词
Generalized Boussinesq equation; symbolic computation method; N-soliton; breather; rogue wave; interaction and collision; NONLINEAR SCHRODINGER SYSTEM; SOLITARY WAVES;
D O I
10.1080/00207160.2019.1639678
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A particular attention is paid on a generalized nonlinear Boussinesq equation which can be used to describe the wave dynamics in fluids. Via symbolic computation method, analytical N-soliton solutions, three types of breather solutions (namely, Kuznetsov-Ma, Akhmediev and generalized breather solutions), and rogue wave solutions are obtained. The extreme points of rogue waves are analyzed in detail. Furthermore, a type of novel X-like soliton is observed.
引用
收藏
页码:1648 / 1661
页数:14
相关论文
共 38 条
[1]   METHOD FOR SOLVING SINE-GORDON EQUATION [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1973, 30 (25) :1262-1264
[2]   EXACT 1ST-ORDER SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
ELEONSKII, VM ;
KULAGIN, NE .
THEORETICAL AND MATHEMATICAL PHYSICS, 1987, 72 (02) :809-818
[3]   Soliton solutions for Boussinesq-like equations with spatio-temporal dispersion [J].
Darvishi, M. T. ;
Najafi, M. ;
Wazwaz, A. M. .
OCEAN ENGINEERING, 2017, 130 :228-240
[4]   Solitary waves, homoclinic breather waves and rogue waves of the (3+1)-dimensional Hirota bilinear equation [J].
Dong, Min-Jie ;
Tian, Shou-Fu ;
Yan, Xue-Wei ;
Zou, Li .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (03) :957-964
[5]   Lie group analysis, analytic solutions and conservation laws of the (3+1)-dimensional Zakharov-Kuznetsov-Burgers equation in a collisionless magnetized electron-positron-ion plasma [J].
Du, Xia-Xia ;
Tian, Bo ;
Wu, Xiao-Yu ;
Yin, Hui-Min ;
Zhang, Chen-Rong .
EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (09)
[6]  
Dudley JM, 2014, NAT PHOTONICS, V8, DOI [10.1038/NPHOTON.2014.220, 10.1038/nphoton.2014.220]
[7]   Mathematical view with observational/experimental consideration on certain (2+1)-dimensional waves in the cosmic/laboratory dusty plasmas [J].
Gao, Xin-Yi .
APPLIED MATHEMATICS LETTERS, 2019, 91 :165-172
[8]   Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient Hirota equation [J].
Gao, Xin-Yi .
APPLIED MATHEMATICS LETTERS, 2017, 73 :143-149
[9]   New observation on the breather for a generalized nonlinear Schrodinger system with two higher-order dispersion operators in inhomogeneous optical fiber [J].
Guan, Wen-Yang ;
Li, Bang-Qing .
OPTIK, 2019, 181 :853-861
[10]   A higher-order coupled nonlinear Schrodinger system: solitons, breathers, and rogue wave solutions [J].
Guo, Rui ;
Zhao, Hui-Hui ;
Wang, Yuan .
NONLINEAR DYNAMICS, 2016, 83 (04) :2475-2484