Dual Q/V-Band SiGe BiCMOS Low Noise Amplifiers Using Q-Enhanced Metamaterial Transmission Lines

被引:10
作者
Lee, Donghyun [1 ,2 ]
Nguyen, Cam [1 ,2 ]
机构
[1] Qualcomm Inc, RFFE, San Diego, CA 92121 USA
[2] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
关键词
BiCMOS; CMOS; composite right/lefthanded (CRLH) metamaterial; low-noise amplifier (LNA); millimeter-wave; phased array; receiver; radar; SiGe BiCMOS;
D O I
10.1109/TCSII.2020.3020575
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief presents two dual-band low noise amplifiers (LNAs) in Q/V-band fabricated in 0.18-mu m SiGe BiCMOS technology. The developed LNAs function over the dual (44/60 GHz)-band with an integrated filtering function and achieve peak power gain of 19.1 dB with minimal gain imbalance of less than 0.2 dB between the two bands. The achieved 3-dB bandwidths are more than 6 GHz for each band of the two LNAs with the lowest measured noise figure of 5.6 dB in the targeted frequency bands. The synthesized Q-enhanced metamaterial transmission line structures proposed in this brief contribute a dual-band operation at 44/60 GHz with a rejection of more than 30 dB between the two bands. The Colpitts style negative generation circuit is utilized in conjunction with composite right/left-handed metamaterial transmission line and its dual structure, which is unprecedented, to realize multi-band millimeter-wave integrated circuits.
引用
收藏
页码:898 / 902
页数:5
相关论文
共 12 条
[1]  
[Anonymous], 2013, SBC18 DESIGN MANUAL
[2]  
Caloz C, 2006, ELECTROMAGNETIC METAMATERIALS: TRANSMISSION LINE THEORY AND MICROWAVE APPLICATIONS: THE ENGINEERING APPROACH, P1
[3]   Dual composite right/left-handed (D-CRLH) transmission line metamaterial [J].
Caloz, Christophe .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2006, 16 (11) :585-587
[4]   A 0.18-μm CMOS selective receiver front-end for UWB applications [J].
Cusmai, Giuseppe ;
Brandolini, Massimo ;
Rossi, Paolo ;
Svelto, Francesco .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2006, 41 (08) :1764-1771
[5]  
Gamal M., 2015, P IEEE 58 INT MIDW S, P1
[6]  
Gharpurey R, 2005, IEEE RAD FREQ INTEGR, P331
[7]   A 33-GHz LNA for 5G Wireless Systems in 28-nm Bulk CMOS [J].
Hedayati, Mahsa Keshavarz ;
Abdipour, Abdolali ;
Shirazi, Reza Sarraf ;
Cetintepe, Cagri ;
Staszewski, Robert Bogdan .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2018, 65 (10) :1460-1464
[8]   A Dual-Band 10/24-GHz Amplifier Design Incorporating Dual-Frequency Complex Load Matching [J].
Hsieh, Kai-An ;
Wu, Hsien-Shun ;
Tsai, Kun-Hung ;
Tzuang, Ching-Kuang Clive .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2012, 60 (06) :1649-1657
[9]   A Scalable 6-to-18 GHz Concurrent Dual-Band Quad-Beam Phased-Array Receiver in CMOS [J].
Jeon, Sanggeun ;
Wang, Yu-Jiu ;
Wang, Hua ;
Bohn, Florian ;
Natarajan, Arun ;
Babakhani, Aydin ;
Hajimiri, Ali .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2008, 43 (12) :2660-2673
[10]  
Lee J, 2016, IEEE CPMT SYMP JAP, P118, DOI 10.1109/ICSJ.2016.7801247