Contextual Classification of Sea-Ice Types Using Compact Polarimetric SAR Data

被引:32
作者
Ghanbari, Mohsen [1 ]
Clausi, David A. [1 ]
Xu, Linlin [1 ]
Jiang, Mingzhe [1 ]
机构
[1] Univ Waterloo, Dept Syst Design Engn, Vis & Image Proc VIP Res Grp, Waterloo, ON N2L 3G1, Canada
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2019年 / 57卷 / 10期
基金
加拿大自然科学与工程研究理事会;
关键词
Classification; compact polarimetry; dual-pol; RADARSAT-2; sea-ice; segmentation; support vector machine (SVM); synthetic aperture radar (SAR); SYNTHETIC-APERTURE RADAR; OIL-SPILL DETECTION; SYMMETRY PROPERTIES; FEATURES; IMAGERY; RECONSTRUCTION; POLARIZATION; ALGORITHM; SUPPORT;
D O I
10.1109/TGRS.2019.2913796
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Automatic classification methods using satellite imagery are beneficial in the sea-ice-type mapping of the Arctic regions. In the near future, the RADARSAT Constellation Mission (RCM) will be launched, providing unique compact polarimetric (CP) synthetic aperture radar (SAR) data, expected to be an improvement over the current RADARSAT-2 dual-polarimetric SAR imagery. This motivates the implementation of a CP-dedicated automatic scene classification approach. First, an existing unsupervised segmentation algorithm called iterative region growing using semantics (IRGS) is used to segment ice-class homogeneous regions to reduce the impact of speckle noise. Second, a support vector machine (SVM) is used to classify the ice-type labels for each homogeneous region. Two complex quad-polarimetric RADARSAT-2 scenes are used to mathematically simulate the corresponding CP scenes for algorithm testing. Classification accuracy shows that using only the two CP intensity images leads to improved results compared with standard dual-polarimetric scenes. Using the CP data, the best classification results are obtained with the reconstructed QP data for the IRGS segmentation and all derived CP features for the SVM labeling. The results support the expected potential that CP scenes will provide improved sea-ice classification than the current operational dual-pol scenes.
引用
收藏
页码:7476 / 7491
页数:16
相关论文
共 57 条
[1]   Forest classification using extracted PolSAR features from Compact Polarimetry data [J].
Aghabalaei, Amir ;
Maghsoudi, Yasser ;
Ebadi, Hamid .
ADVANCES IN SPACE RESEARCH, 2016, 57 (09) :1939-1950
[2]   Classification comparisons between dual-pol, compact polarimetric and quad-pol SAR imagery [J].
Ainsworth, T. L. ;
Kelly, J. P. ;
Lee, J. -S. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2009, 64 (05) :464-471
[3]  
[Anonymous], 2001, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
[4]  
Boerner W. M., 1992, Direct and Inverse Methods in Radar Polarimetry. Proceedings of the NATO Advanced Research Workshop, P155
[5]   Polarimetric Analysis of Compact-Polarimetry SAR Architectures for Sea Oil Slick Observation [J].
Buono, Andrea ;
Nunziata, Ferdinando ;
Migliaccio, Maurizio ;
Li, Xiaofeng .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10) :5862-5874
[6]   Compact polarimetry overview and applications assessment [J].
Charbonneau, F. J. ;
Brisco, B. ;
Raney, R. K. ;
McNairn, H. ;
Liu, C. ;
Vachon, P. W. ;
Shang, J. ;
DeAbreu, R. ;
Champagne, C. ;
Merzouki, A. ;
Geldsetzer, T. .
CANADIAN JOURNAL OF REMOTE SENSING, 2010, 36 :S298-S315
[7]   MAGIC: MAp-Guided Ice Classification System [J].
Clausi, D. A. ;
Qin, A. K. ;
Chowdhury, M. S. ;
Yu, P. ;
Maillard, P. .
CANADIAN JOURNAL OF REMOTE SENSING, 2010, 36 :S13-S25
[8]   Compact Decomposition Theory [J].
Cloude, S. R. ;
Goodenough, D. G. ;
Chen, H. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (01) :28-32
[9]  
Cloude S.R., 2010, Polarisation: applications in remote sensing
[10]   An entropy based classification scheme for land applications of polarimetric SAR [J].
Cloude, SR ;
Pottier, E .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35 (01) :68-78