Hochschild cohomology of relation extension algebras

被引:9
作者
Assem, Ibrahim [1 ]
Gatica, Maria Andrea [2 ]
Schiffler, Ralf [3 ]
Taillefer, Rachel [4 ]
机构
[1] Univ Sherbrooke, Dept Math, Sherbrooke, PQ J1K 2R1, Canada
[2] Univ Nacl Sur, Dept Matemat, Ave Alem 1253, RA-8000 Bahia Blanca, Buenos Aires, Argentina
[3] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[4] Univ Clermont Ferrand, UMR 6620, Math Lab, Campus Cezeaux,3,Pl Vasarely,TSA 60026,CS 60026, F-63178 Aubiere, France
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
CLUSTER-TILTED ALGEBRAS; TRIVIAL EXTENSIONS; QUIVERS; RESOLUTIONS; RING; A(N);
D O I
10.1016/j.jpaa.2015.11.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let B be the split extension of a finite dimensional algebra C by a C-C-bimodule E. We define a morphism of associative graded algebras phi* : HH*(B)) -> HH* (C) from the Hochschild cohomology of B to that of C, extending similar constructions for the first cohomology groups made and studied by Assem, Bustamante, Igusa, Redondo and Schiflier. In the case of a trivial extension B = C x E, we give necessary and sufficient conditions for each con to be surjective. We prove the surjectivity of phi(1) for a class of trivial extensions that includes relation extensions and hence cluster -tilted algebras. Finally, we study the kernel of phi(1) for any trivial extension, and give a more precise description of this kernel in the case of relation extensions. (c) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:2471 / 2499
页数:29
相关论文
共 27 条
[1]   CLUSTER CATEGORIES FOR ALGEBRAS OF GLOBAL DIMENSION 2 AND QUIVERS WITH POTENTIAL [J].
Amiot, Claire .
ANNALES DE L INSTITUT FOURIER, 2009, 59 (06) :2525-2590
[2]  
[Anonymous], 1998, COLLOQ MATH-WARSAW, DOI DOI 10.4064/CM-78-2-261-266
[3]   Cluster-tilted algebras as trivial extensions [J].
Assem, I. ;
Bruestle, T. ;
Schiffler, R. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 :151-162
[4]  
Assem I., 2006, Techniques of Representation Theory, V1
[5]  
Assem I., 2015, ALGEBR REPR IN PRESS
[6]   THE FIRST HOCHSCHILD COHOMOLOGY GROUP OF A CLUSTER TILTED ALGEBRA REVISITED [J].
Assem, Ibrahim ;
Bustamante, Juan Carlos ;
Igusa, Kiyoshi ;
Schiffler, Ralf .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2013, 23 (04) :729-744
[7]   The first Hochschild cohomology group of a schurian cluster-tilted algebra [J].
Assem, Ibrahim ;
Redondo, Maria Julia .
MANUSCRIPTA MATHEMATICA, 2009, 128 (03) :373-388
[8]   From iterated tilted algebras to cluster-tilted algebras [J].
Barot, Michael ;
Fernandez, Elsa ;
Ines Platzeck, Maria ;
Isabel Pratti, Nilda ;
Trepode, Sonia .
ADVANCES IN MATHEMATICS, 2010, 223 (04) :1468-1494
[9]  
Buan AB, 2007, T AM MATH SOC, V359, P323
[10]   Quivers with relations arising from clusters (An case) [J].
Caldero, P ;
Chapoton, F ;
Schiffler, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (03) :1347-1364