On large time asymptotics for drift-diffusion-Poisson systems

被引:45
作者
Arnold, A
Markowich, P
Toscani, G
机构
[1] Tech Univ Berlin, Fachbereich Math, D-10623 Berlin, Germany
[2] Univ Linz, Inst Anal & Numer, A-4040 Linz, Austria
[3] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
来源
TRANSPORT THEORY AND STATISTICAL PHYSICS | 2000年 / 29卷 / 3-5期
关键词
D O I
10.1080/00411450008205893
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyze the convergence rate of solutions of certain drift-diffusion-Poisson systems to their unique steady state. These hi-polar equations model the transport of two populations of charged particles and have applications for semiconductor devices and plasmas. When prescribing a confinement potential for the particles we prove exponential convergence to the equilibrium. Without confinement the solution decays with an algebraic rate towards a self-similar state. The analysis is based on a relative entropy type functional and it uses logarithmic Sobolev inequalities.
引用
收藏
页码:571 / 581
页数:11
相关论文
共 15 条
[1]  
Arnold A., 1996, Transport Theory and Statistical Physics, V25, P733, DOI 10.1080/00411459608203544
[2]  
ARNOLD A, 1998, LOGARITHMIC SOBOLEV
[3]  
CARRILLO JA, 1999, IN PRESS IND U J MAT
[4]  
Csiszar I., 1964, Magyar Tud. Akad. Mat. Kutat'o Int. K"ozl., V8, P85
[5]  
Dolbeault J., 1991, Mathematical Models & Methods in Applied Sciences, V1, P183, DOI 10.1142/S0218202591000113
[6]  
DOLBEAULT J, 1999, UNPUB P ROY SOC EDIN
[7]  
FABES EB, 1986, ARCH RATION MECH AN, V96, P327
[8]   ON EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF THE BASIC EQUATIONS FOR CARRIER TRANSPORT IN SEMICONDUCTORS [J].
GAJEWSKI, H .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1985, 65 (02) :101-108
[9]  
Gross L., 1993, LECT NOTES MATH, V1563
[10]   LOGARITHMIC SOBOLEV INEQUALITIES AND STOCHASTIC ISING-MODELS [J].
HOLLEY, R ;
STROOCK, D .
JOURNAL OF STATISTICAL PHYSICS, 1987, 46 (5-6) :1159-1194