Analysis on the smoothing method for the P-linear complementarity systems

被引:0
作者
Yang, W. H. [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear complementarity systems; Smoothing method; P-matrix; Semismooth; DIFFERENTIAL VARIATIONAL-INEQUALITIES;
D O I
10.1016/j.na.2009.09.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A smoothing method for solving the linear complementarity systems (LCS) has been proposed by Zheng in his thesis. In Zheng's algorithm, the LCS is reformulated as a parameterized differential-algebraic equation (DAE). However, the existence of the solution of the parameterized DAE is not proved. The aim of this paper is to establish the existence of the solution of the parameterized DAE and to demonstrate the continuous dependence of the solution on the parameter and the initial value of the parameterized DAE. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1961 / 1966
页数:6
相关论文
共 50 条
  • [31] A simple P-matrix linear complementarity problem for discounted games
    Jurdzinski, Marcin
    Savani, Rahul
    LOGIC AND THEORY OF ALGORITHMS, 2008, 5028 : 283 - 293
  • [32] A Globally Convergent Smoothing Method for Symmetric Conic Linear Programming
    Chi, Xiaoni
    Li, Ping
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2009, 5821 : 136 - 143
  • [33] ROBUST NON-ZENONESS OF PIECEWISE AFFINE SYSTEMS WITH APPLICATIONS TO LINEAR COMPLEMENTARITY SYSTEMS
    Shen, Jinglai
    SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (04) : 2023 - 2056
  • [34] Error estimation for nonlinear complementarity problems via linear systems with interval
    Alefeld, Goetz
    Wang, Zhengyu
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2008, 29 (3-4) : 243 - 267
  • [35] A Smoothing Newton Method with Fischer-Burmeister Function for Second-Order Cone Complementarity Problems
    Narushima, Yasushi
    Sagara, Nobuko
    Ogasawara, Hideho
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 149 (01) : 79 - 101
  • [36] A Smoothing Newton Method with Fischer-Burmeister Function for Second-Order Cone Complementarity Problems
    Yasushi Narushima
    Nobuko Sagara
    Hideho Ogasawara
    Journal of Optimization Theory and Applications, 2011, 149 : 79 - 101
  • [37] A generalized modulus-based Newton method for solving a class of non-linear complementarity problems with P-matrices
    Rui Li
    Zhi-Lin Li
    Jun-Feng Yin
    Numerical Algorithms, 2022, 89 : 839 - 853
  • [38] Trajectory tracking in linear complementarity systems with and without state jumps: A passivity approach
    Younes, Aya
    Miranda-Villatoro, Felix
    Brogliato, Bernard
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2024, 54
  • [39] CONVERGENCE OF TIME-STEPPING SCHEMES FOR PASSIVE AND EXTENDED LINEAR COMPLEMENTARITY SYSTEMS
    Han, Lanshan
    Tiwari, Alok
    Camlibel, M. Kanat
    Pang, Jong-Shi
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (05) : 3768 - 3796
  • [40] Popov-Belevitch-Hautus type controllability tests for linear complementarity systems
    Camlibel, M. Kanat
    SYSTEMS & CONTROL LETTERS, 2007, 56 (05) : 381 - 387