Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks

被引:55
作者
McKinley, Richard [1 ]
Wepfer, Rik [1 ]
Aschwanden, Fabian [1 ]
Grunder, Lorenz [1 ]
Muri, Raphaela [1 ]
Rummel, Christian [1 ]
Verma, Rajeev [2 ]
Weisstanner, Christian [3 ]
Reyes, Mauricio [4 ]
Salmen, Anke [5 ]
Chan, Andrew [5 ]
Wagner, Franca [1 ]
Wiest, Roland [1 ]
机构
[1] Univ Hosp Bern, Univ Inst Diagnost & Intervent Neuroradiol, Support Ctr Adv Neuroimaging, Inselspital, Bern, Switzerland
[2] Swiss Parapleg Ctr, Nottwil, Switzerland
[3] Med Radiol Inst, Zurich, Switzerland
[4] Univ Bern, ARTORG Ctr Biomed Engn Res, Bern, Switzerland
[5] Bern Univ Hosp, Univ Clin Neurol, Inselspital, Bern, Switzerland
关键词
WHITE-MATTER LESIONS; DISEASE-ACTIVITY; FLAIR; MRI;
D O I
10.1038/s41598-020-79925-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Segmentation of white matter lesions and deep grey matter structures is an important task in the quantification of magnetic resonance imaging in multiple sclerosis. In this paper we explore segmentation solutions based on convolutional neural networks (CNNs) for providing fast, reliable segmentations of lesions and grey-matter structures in multi-modal MR imaging, and the performance of these methods when applied to out-of-centre data. We trained two state-of-the-art fully convolutional CNN architectures on the 2016 MSSEG training dataset, which was annotated by seven independent human raters: a reference implementation of a 3D Unet, and a more recently proposed 3D-to-2D architecture (DeepSCAN). We then retrained those methods on a larger dataset from a single centre, with and without labels for other brain structures. We quantified changes in performance owing to dataset shift, and changes in performance by adding the additional brain-structure labels. We also compared performance with freely available reference methods. Both fully-convolutional CNN methods substantially outperform other approaches in the literature when trained and evaluated in cross-validation on the MSSEG dataset, showing agreement with human raters in the range of human inter-rater variability. Both architectures showed drops in performance when trained on single-centre data and tested on the MSSEG dataset. When trained with the addition of weak anatomical labels derived from Freesurfer, the performance of the 3D Unet degraded, while the performance of the DeepSCAN net improved. Overall, the DeepSCAN network predicting both lesion and anatomical labels was the best-performing network examined.
引用
收藏
页数:11
相关论文
共 34 条
[1]   A Logarithmic Opinion Pool Based STAPLE Algorithm for the Fusion of Segmentations With Associated Reliability Weights [J].
Akhondi-Asl, Alireza ;
Hoyte, Lennox ;
Lockhart, Mark E. ;
Warfield, Simon K. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (10) :1997-2009
[2]   Reliability of Classifying Multiple Sclerosis Disease Activity Using Magnetic Resonance Imaging in a Multiple Sclerosis Clinic [J].
Altay, Ebru Erbayat ;
Fisher, Elizabeth ;
Jones, Stephen E. ;
Hara-Cleaver, Claire ;
Lee, Jar-Chi ;
Rudick, Richard A. .
JAMA NEUROLOGY, 2013, 70 (03) :338-344
[3]  
[Anonymous], 2019, FEW SHOT BRAIN SEGME
[4]   Tremor in multiple sclerosis is associated with cerebello-thalamic pathology [J].
Boonstra, Frederique ;
Florescu, Grace ;
Evans, Andrew ;
Steward, Chris ;
Mitchell, Peter ;
Desmond, Patricia ;
Moffat, Brad ;
Butzkueven, Helmut ;
Kolbe, Scott ;
van der Walt, Anneke .
JOURNAL OF NEURAL TRANSMISSION, 2017, 124 (12) :1509-1514
[5]  
Cerri S., 2020, ARXIV PREPRINT ARXIV
[6]   Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure [J].
Commowick, Olivier ;
Istace, Audrey ;
Kain, Michael ;
Laurent, Baptiste ;
Leray, Florent ;
Simon, Mathieu ;
Pop, Sorina Camarasu ;
Girard, Pascal ;
Ameli, Roxana ;
Ferre, Jean-Christophe ;
Kerbrat, Anne ;
Tourdias, Thomas ;
Cervenansky, Frederic ;
Glatard, Tristan ;
Beaumont, Jeremy ;
Doyle, Senan ;
Forbes, Florence ;
Knight, Jesse ;
Khademi, April ;
Mahbod, Amirreza ;
Wang, Chunliang ;
McKinley, Richard ;
Wagner, Franca ;
Muschelli, John ;
Sweeney, Elizabeth ;
Roura, Eloy ;
Llado, Xavier ;
Santos, Michel M. ;
Santos, Wellington P. ;
Silva-Filho, Abel G. ;
Tomas-Fernandez, Xavier ;
Urien, Helene ;
Bloch, Isabelle ;
Valverde, Sergi ;
Cabezas, Mariano ;
Javier Vera-Olmos, Francisco ;
Malpica, Norberto ;
Guttmann, Charles ;
Vukusic, Sandra ;
Edan, Gilles ;
Dojat, Michel ;
Styner, Martin ;
Warfield, Simon K. ;
Cotton, Francois ;
Barillot, Christian .
SCIENTIFIC REPORTS, 2018, 8
[7]   OFSEP, a nationwide cohort of people with multiple sclerosis: Consensus minimal MRI protocol [J].
Cotton, F. ;
Kremer, S. ;
Hannoun, S. ;
Vukusic, S. ;
Dousset, V. .
JOURNAL OF NEURORADIOLOGY, 2015, 42 (03) :133-140
[8]  
Crimi A, BRAINLESION GLIOMA
[9]   Deep gray matter volume loss drives disability worsening in multiple sclerosis [J].
Eshaghi, Arman ;
Prados, Ferran ;
Brownlee, Wallace J. ;
Altmann, Daniel R. ;
Tur, Carmen ;
Cardoso, M. Jorge ;
De Angelis, Floriana ;
van de Pavert, Steven H. ;
Cawley, Niamh ;
De Stefano, Nicola ;
Stromillo, M. Laura ;
Battaglini, Marco ;
Ruggieri, Serena ;
Gasperini, Claudio ;
Filippi, Massimo ;
Rocca, Maria A. ;
Rovira, Alex ;
Sastre-Garriga, Jaume ;
Vrenken, Hugo ;
Leurs, Cyra E. ;
Killestein, Joep ;
Pirpamer, Lukas ;
Enzinger, Christian ;
Ourselin, Sebastien ;
Wheeler-Kingshott, Claudia A. M. Gandini ;
Chard, Declan ;
Thompson, Alan J. ;
Alexander, Daniel C. ;
Barkhof, Frederik ;
Ciccarelli, Olga .
ANNALS OF NEUROLOGY, 2018, 83 (02) :210-222
[10]   Automated Detection and Segmentation of Multiple Sclerosis Lesions Using Ultra-High-Field MP2RAGE [J].
Fartaria, Mario Joao ;
Sati, Pascal ;
Todea, Alexandra ;
Radue, Ernst-Wilhelm ;
Rahmanzadeh, Reza ;
O'Brien, Kieran ;
Reich, Daniel S. ;
Cuadra, Meritxell Bach ;
Kober, Tobias ;
Granziera, Cristina .
INVESTIGATIVE RADIOLOGY, 2019, 54 (06) :356-364