Electrochemical Performance of High-Voltage LiMn0.8Fe0.2PO4 Cathode with Polyacrylonitrile (PAN)-Based Gel Polymer Electrolyte

被引:2
|
作者
Kwon, O. Hyeon [1 ]
Kim, Jae-Kwang [1 ]
机构
[1] Cheongju Univ, Dept Solar & Energy Engn, 298 Daeseong Ro, Cheongju 28503, Chungcheongbuk, South Korea
来源
KOREAN CHEMICAL ENGINEERING RESEARCH | 2019年 / 57卷 / 04期
关键词
LiMn0.8Fe0.2PO4; Polyacrylonitrile; High potential; Electrochemical performance; Lithium ion battery; LITHIUM; LIMNPO4; FE; CONDUCTIVITY; SUBSTITUTION;
D O I
10.9713/kcer.2019.57.4.547
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Electrochemical properties of LiMn0.8Fe0.2PO4 cathode were investigated with gel polymer electrolyte (GPE). To access fast and efficient transport of ions and electrons during the charge/discharge process, a pure and well-crystallized LiMn0.8Fe0.2PO4 cathode material was directly synthesized via spray-pyrolysis method. For high operation voltage, polyaciylonitrile (PAN)-based gel polymer electrolyte was then prepared by electrospinning process. The gel polymer electrolyte showed high ionic conductivity of 2.9 x 10(-3) S cm(-1) at 25 degrees C and good electrochemical stability. Li/GEP/LiMn0.8Fe0.2PO4 cell delivered a discharge capacity of 159 mAh g(-1) at 0.1 C rate that was close to the theoretical value (170 mAh g(-1)). The cell allows stable cycle performance (99.3% capacity retention) with discharge capacity of 133.5 mAh g(-1) for over 300 cycles at 1 C rate and exhibits high rate-capability. PAN-based gel polymer is a suitable electrolyte for application in LiMn0.8Fe0.2PO4/Li batteries with perspective in high energy density and safety.
引用
收藏
页码:547 / 552
页数:6
相关论文
共 50 条
  • [21] Structure, performance, morphology and component transformation mechanism of LiMn0.8Fe0.2PO4/C nanocrystal with excellent stability
    Luo, Ting
    Zeng, Tao-tao
    Chen, Shi-lin
    Li, Rong
    Fan, Run-zhen
    Chen, Han
    Han, Shao-chang
    Fan, Chang-ling
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 834
  • [22] Mg-doped LiMn0.8Fe0.2PO4/C nano-plate as a high-performance cathode material for lithium-ion batteries
    Hu, Hui
    Li, Heng
    Lei, Yu
    Liu, Jiali
    Liu, Xiaolin
    Wang, Ruijuan
    Peng, Jiao
    Wang, Xianyou
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [23] Impedance studies of LiMn0.8Fe0.2PO4/C cathodes for lithium-ion batteries
    Zhang, Lei
    Zhang, Xuping
    Wang, Li
    Zhuang, Quanchao
    Ju, Zhicheng
    Cui, Yanhua
    IONICS, 2021, 27 (11) : 4673 - 4686
  • [24] Simple synthesis of a hierarchical LiMn0.8Fe0.2PO4/C cathode by investigation of iron sources for lithium-ion batteries
    Li, Yuanchao
    Xing, Baoyan
    Zhang, Huishuang
    Wang, Mengjie
    Yang, Li
    Xu, Guangri
    Yang, Shuting
    RSC ADVANCES, 2022, 12 (40) : 26070 - 26077
  • [25] Enhanced carbon-coating performance of LiMn0.8Fe0.2PO4/C via solvothermal method by adding of graphene
    Ren Li
    Wang Fangfang
    Liu Hongyu
    SYNTHETIC METALS, 2014, 197 : 62 - 67
  • [26] Carbon-coated LiMn0.8Fe0.2PO4 cathodes for high-rate lithium-ion batteries
    Yao, Xi
    Li, Dan
    Guo, Li
    Kallel, Mohamed
    Alahmari, Saeed D.
    Ren, Juanna
    Seok, Ilwoo
    Roymahapatra, Gourisankar
    Wang, Chao
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2024, 7 (02)
  • [27] Carbon-coated LiMn0.8Fe0.2PO4 cathodes for high-rate lithium-ion batteries
    Xi Yao
    Dan Li
    Li Guo
    Mohamed Kallel
    Saeed D. Alahmari
    Juanna Ren
    Ilwoo Seok
    Gourisankar Roymahapatra
    Chao Wang
    Advanced Composites and Hybrid Materials, 2024, 7
  • [28] Green and efficient synthesis of micro-nano LiMn0.8Fe0.2PO4/C composite with high-rate performance for Li-ion battery
    Peng, Zhongdong
    Zhang, Baichao
    Hu, Guorong
    Du, Ke
    Xie, Xiaoming
    Wu, Kaipeng
    Wu, Jiahui
    Gong, Yifan
    Shu, Yuming
    Cao, Yanbing
    ELECTROCHIMICA ACTA, 2021, 387
  • [29] LiMn0.8Fe0.2PO4/C Nanoparticles via Polystyrene Template Carburizing Enhance the Rate Capability and Capacity Reversibility of Cathode Materials
    Wang, Yan
    Yong, Fubao
    Wang, Zhihua
    Wang, Miao
    Peng, Qian
    Zhao, Min
    Chen, Zhen
    Huang, Qi
    Yang, Shanshan
    Yu, Faquan
    ACS APPLIED NANO MATERIALS, 2024, 7 (04) : 4024 - 4034
  • [30] LiMn0.8Fe0.2PO4/Carbon Nanospheres@Graphene Nanoribbons Prepared by the Biomineralization Process as the Cathode for Lithium-Ion Batteries
    Hou, Yu-Kun
    Pan, Gui-Ling
    Sun, Yan-Yun
    Gao, Xue-Ping
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (19) : 16500 - 16510