A measurable-group-theoretic solution to von Neumann's problem

被引:60
作者
Gaboriau, Damien [1 ]
Lyons, Russell [2 ]
机构
[1] Univ Lyon, Unite Math Pures & Appl, CNRS, Ens Lyon, F-69364 Lyon 7, France
[2] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
MINIMAL SPANNING FORESTS; CAYLEY-GRAPHS; PERCOLATION; EQUIVALENCE; CLUSTERS; COST;
D O I
10.1007/s00222-009-0187-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a positive answer, in the measurable-group-theory context, to von Neumann's problem of knowing whether a non-amenable countable discrete group contains a non-cyclic free subgroup. We also get an embedding result of the free-group von Neumann factor into restricted wreath product factors.
引用
收藏
页码:533 / 540
页数:8
相关论文
共 14 条
[1]  
[Anonymous], 1929, Collected works
[2]  
Benjamini I, 2001, ANN PROBAB, V29, P1
[3]  
Benjamini I., 1996, ELECTRON COMMUN PROB, V1, P71
[4]   Invariant percolation and harmonic Dirichlet functions [J].
Gaboriau, D .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2005, 15 (05) :1004-1051
[5]  
Gaboriau D, 2000, INVENT MATH, V139, P41, DOI 10.1007/s002229900019
[6]   Monotonicity of uniqueness for percolation on Cayley graphs:: all infinite clusters are born simultaneously [J].
Häggström, O ;
Peres, Y .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (02) :273-285
[7]   A lemma for cost attained [J].
Hjorth, Greg .
ANNALS OF PURE AND APPLIED LOGIC, 2006, 143 (1-3) :87-102
[8]   Indistinguishability of percolation clusters [J].
Lyons, R ;
Schramm, O .
ANNALS OF PROBABILITY, 1999, 27 (04) :1809-1836
[9]   Minimal spanning forests [J].
Lyons, Russell ;
Peres, Yuval ;
Schramm, Oded .
ANNALS OF PROBABILITY, 2006, 34 (05) :1665-1692
[10]   On non-uniqueness of percolation on nonamenable Cayley graphs [J].
Pak, I ;
Smirnova-Nagnibeda, T .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (06) :495-500