D-glucose overflow metabolism in an evolutionary engineered high-performance D-xylose consuming Saccharomyces cerevisiae strain

被引:3
作者
Nijland, Jeroen G. [1 ,2 ]
Shin, Hyun Yong [1 ,2 ]
Dore, Eleonora [1 ,2 ]
Rudinatha, Donny [1 ,2 ]
de Waal, Paul P. [3 ]
Driessen, Arnold J. M. [1 ,2 ]
机构
[1] Univ Groningen, Zernike Inst Adv Mat, Groningen Biomol Sci & Biotechnol, Mol Microbiol, Groningen, Netherlands
[2] Kluyver Ctr Genom Ind Fermentat, Groningen, Netherlands
[3] DSM Biotechnol Ctr, Alexander Fleminglaan 1, NL-2613 AX Delft, Netherlands
关键词
sugar transport; D-xylose transporter; trehalose-6-phosphate; bioethanol; yeast; glycolysis; INDIVIDUAL HEXOSE TRANSPORTERS; IN-VIVO PHOSPHORYLATION; ETHANOL-PRODUCTION; TREHALOSE-6-PHOSPHATE SYNTHASE; TREHALOSE-SYNTHASE; YEAST HEXOKINASE; SUGAR-TRANSPORT; CO-CONSUMPTION; FUEL ETHANOL; HXT GENES;
D O I
10.1093/femsyr/foaa062
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Co-consumption of D-xylose and D-glucose by Saccharomyces cerevisiae is essential for cost-efficient cellulosic bioethanol production. There is a need for improved sugar conversion rates to minimize fermentation times. Previously, we have employed evolutionary engineering to enhance D-xylose transport and metabolism in the presence of D-glucose in a xylose-fermenting S. cerevisiae strain devoid of hexokinases. Re-introduction of Hxk2 in the high performance xylose-consuming strains restored D-glucose utilization during D-xylose/D-glucose co-metabolism, but at rates lower than the non-evolved strain. In the absence of D-xylose, D-glucose consumption was similar to the parental strain. The evolved strains accumulated trehalose-6-phosphate during sugar co-metabolism, and showed an increased expression of trehalose pathway genes. Upon the deletion of TSL1, trehalose-6-phosphate levels were decreased and D-glucose consumption and growth on mixed sugars was improved. The data suggest that D-glucose/D-xylose co-consumption in high-performance D-xylose consuming strains causes the glycolytic flux to saturate. Excess D-glucose is phosphorylated enters the trehalose pathway resulting in glucose recycling and energy dissipation, accumulation of trehalose-6-phosphate which inhibits the hexokinase activity, and release of trehalose into the medium.
引用
收藏
页数:14
相关论文
共 73 条
[61]   Regulation of the yeast trehalose-synthase complex by cyclic AMP-dependent phosphorylation [J].
Trevisol, Eduardo T. V. ;
Panek, Anita D. ;
De Mesquita, Joelma F. ;
Eleutherio, Elis C. A. .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2014, 1840 (06) :1646-1650
[62]   Development of efficient xylose fermentation in Saccharomyces cereviside:: Xylose lsomerase as a key component [J].
van Maris, Antonius J. A. ;
Winkler, Aaron A. ;
Kuyper, Marko ;
de Laat, Wirn T. A. M. ;
van Dijken, Johannes P. ;
Pronk, Jack T. .
BIOFUELS, 2007, 108 :179-204
[63]   Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis [J].
Verhoeven, Maarten D. ;
Lee, Misun ;
Kamoen, Lycka ;
van den Broek, Marcel ;
Janssen, Dick B. ;
Daran, Jean-Marc G. ;
van Maris, Antonius J. A. ;
Pronk, Jack T. .
SCIENTIFIC REPORTS, 2017, 7
[64]  
Verhoeven MD, 2018, FEMS YEAST RES, P18, DOI [10.1093/femsyr/foy062, DOI 10.1093/FEMSYR/F0Y075]
[65]   PHOSPHORYLATION OF YEAST HEXOKINASES [J].
VOJTEK, AB ;
FRAENKEL, DG .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1990, 190 (02) :371-375
[66]   COST-ANALYSIS OF ETHANOL-PRODUCTION FROM WILLOW USING RECOMBINANT ESCHERICHIA-COLI [J].
VONSIVERS, M ;
ZACCHI, G ;
OLSSON, L ;
HAHNHAGERDAL, B .
BIOTECHNOLOGY PROGRESS, 1994, 10 (05) :555-560
[67]  
WALSH RB, 1991, GENETICS, V128, P521
[68]   Cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization [J].
Wang, Chengqiang ;
Bao, Xiaoming ;
Li, Yanwei ;
Jiao, Chunlei ;
Hou, Jin ;
Zhang, Qingzhu ;
Zhang, Weixin ;
Liu, Weifeng ;
Shen, Yu .
METABOLIC ENGINEERING, 2015, 30 :79-88
[69]   Novel Evolutionary Engineering Approach for Accelerated Utilization of Glucose, Xylose, and Arabinose Mixtures by Engineered Saccharomyces cerevisiae Strains [J].
Wisselink, H. Wouter ;
Toirkens, Maurice J. ;
Wu, Qixiang ;
Pronk, Jack T. ;
van Maris, Antonius J. A. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (04) :907-914
[70]   Functional Survey for Heterologous Sugar Transport Proteins, Using Saccharomyces cerevisiae as a Host [J].
Young, Eric ;
Poucher, Ashley ;
Comer, Austin ;
Bailey, Alexandra ;
Alper, Hal .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (10) :3311-3319