Cross Modal Distillation for Supervision Transfer

被引:352
作者
Gupta, Saurabh [1 ]
Hoffman, Judy [1 ]
Malik, Jitendra [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
来源
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2016年
基金
美国国家科学基金会;
关键词
D O I
10.1109/CVPR.2016.309
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we propose a technique that transfers supervision between images from different modalities. We use learned representations from a large labeled modality as supervisory signal for training representations for a new unlabeled paired modality. Our method enables learning of rich representations for unlabeled modalities and can be used as a pre-training procedure for new modalities with limited labeled data. We transfer supervision from labeled RGB images to unlabeled depth and optical flow images and demonstrate large improvements for both these cross modal supervision transfers.
引用
收藏
页码:2827 / 2836
页数:10
相关论文
共 46 条
[41]   REPRESENTATION OF LOCAL GEOMETRY IN THE VISUAL-SYSTEM [J].
KOENDERINK, JJ ;
VANDOORN, AJ .
BIOLOGICAL CYBERNETICS, 1987, 55 (06) :367-375
[42]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[43]  
Lin TY, 2014, ECCV, P740, DOI DOI 10.1007/978-3-319-10602-1_48
[44]  
Long J., 2015, P 2015 IEEE C COMPUT
[45]  
Romero A., 2014, ARXIV14126550
[46]  
Simonyan K., 2014, 14091556 ARXIV, DOI DOI 10.1016/J.INFSOF.2008.09.005