Cotorsion pairs generated by modules of bounded projective dimension

被引:26
作者
Bazzoni, Silvana [1 ]
Herbera, Dolors [2 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35121 Padua, Italy
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
关键词
TILTING MODULES; BAER MODULES; FINITE-TYPE; ALGEBRAS; DOMAINS;
D O I
10.1007/s11856-009-0106-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply the theory of cotorsion pairs to study closure properties of classes of modules with finite projective dimension with respect to direct limit operations and to filtrations. We also prove that if the ring is an order in an a"mu(0)-noetherian ring Q of little finitistic dimension 0, then the cotorsion pair generated by the modules of projective dimension at most one is of finite type if and only if Q has big finitistic dimension 0. This applies, for example, to semiprime Goldie rings and to Cohen Macaulay noetherian commutative rings. Our results allow us to give a positive answer to an open problem on the structure of divisible modules of projective dimension one over commutative domains posed in [23, Problem 6, p. 139]. We also give some insight on the structure of modules of finite weak dimension, giving a counterexample to [25, Open Problem 3, p. 187].
引用
收藏
页码:119 / 160
页数:42
相关论文
共 43 条
[1]   Envelopes and covers by modules of finite injective and projective dimensions [J].
Aldrich, ST ;
Enochs, EE ;
Jenda, OMG ;
Oyonarte, L .
JOURNAL OF ALGEBRA, 2001, 242 (02) :447-459
[2]  
Angeleri Hgel L., 2004, LNPAM, V236, P27
[3]  
Angeleri Hugel LA, 2001, FORUM MATH, V13, P239
[4]  
Angeleri Hugel L, 2006, FORUM MATH, V18, P211
[5]   Tilting theory and the finitistic dimension conjectures [J].
Angeleri-Hügel, L ;
Trlifaj, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (11) :4345-4358
[6]  
[Anonymous], CAMBRIDGE STUDIES AD
[7]   APPLICATIONS OF CONTRAVARIANTLY FINITE SUBCATEGORIES [J].
AUSLANDER, M ;
REITEN, I .
ADVANCES IN MATHEMATICS, 1991, 86 (01) :111-152
[8]  
Auslander Maurice, 1957, Trans. Amer. Math. Soc., V85, P390, DOI DOI 10.2307/1992937
[9]  
Bass H., 1962, T AM MATH SOC, V102, P18
[10]  
Bass H., 1960, T AM MATH SOC, V95, P466, DOI 10.1090/S0002-9947-1960-0157984-8