CERTAIN QUANTUM ESTIMATES ON THE PARAMETERIZED INTEGRAL INEQUALITIES AND THEIR APPLICATIONS

被引:29
作者
Du, Tingsong [1 ]
Luo, Chunyan [1 ]
Yu, Bo [1 ]
机构
[1] China Three Gorges Univ, Dept Math, Coll Sci, Yichang 443002, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2021年 / 15卷 / 01期
基金
中国国家自然科学基金;
关键词
Quantum integrals; s-(alpha; m)-convexity; Hermite-Hadamard's inequality; Simpson's inequality; HERMITE-HADAMARD INEQUALITY; FEJER TYPE INEQUALITIES; CONVEX-FUNCTIONS; SIMPSON TYPE; BOUNDS; M)-CONVEX; PREINVEX; (S;
D O I
10.7153/jmi-2021-15-16
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper aims to study the parameterized inequalities of Hadamard-Simpson type for quantum integrals. By employing a quantum integral identity of multi-parameter, we establish novel inequalities fora class of q-differentiable mappings, which are related to s-(alpha, m)-convex mappings. Moreover, we acquire estimation-type results by considering the boundedness and the Lipschitz condition. As applications, we present two illustrative examples and several quantum integral inequalities for the special means.
引用
收藏
页码:201 / 228
页数:28
相关论文
共 54 条
  • [11] New Quantum Hermite-Hadamard Inequalities Utilizing Harmonic Convexity of the Functions
    Bin-Mohsin, Bandar
    Awan, Muhammad Uzair
    Noor, Muhammad Aslam
    Riahi, Latifa
    Noor, Khalida Inayat
    Almutairi, Bander
    [J]. IEEE ACCESS, 2019, 7 : 20479 - 20483
  • [12] Breckner W. W., 1978, PUBL I MATH, V23, P13
  • [13] Chen FX, 2016, J COMPUT ANAL APPL, V21, P417
  • [14] Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals
    Chen, Hua
    Katugampola, Udita N.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) : 1274 - 1291
  • [15] Dragomir S. S., 1999, Demonstr. Math, V32, P687, DOI [DOI 10.1515/dema-1999-0403, 10.1515/dema-1999-0403]
  • [16] Jensen's and Hermite-Hadamard's Type Inequalities for Lower and Strongly Convex Functions on Normed Spaces
    Dragomir, Silvestru Sever
    Nikodem, Kazimierz
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (05) : 1337 - 1349
  • [17] Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula
    Dragomir, SS
    Agarwal, RP
    [J]. APPLIED MATHEMATICS LETTERS, 1998, 11 (05) : 91 - 95
  • [18] Properties and integral inequalities of Hadamard-Simpson type for the generalized (s,m)-preinvex functions
    Du, Ting-Song
    Liao, Jia-Gen
    Li, Yu-Jiao
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 3112 - 3126
  • [19] CERTAIN INTEGRAL INEQUALITIES CONSIDERING GENERALIZED m-CONVEXITY ON FRACTAL SETS AND THEIR APPLICATIONS
    Du, Tingsong
    Wang, Hao
    Khan, Muhammad Adil
    Zhang, Yao
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (07)
  • [20] Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m,h)-preinvexity
    Du, Tingsong
    Awan, Muhammad Uzair
    Kashuri, Artion
    Zhao, Shasha
    [J]. APPLICABLE ANALYSIS, 2021, 100 (03) : 642 - 662