CERTAIN QUANTUM ESTIMATES ON THE PARAMETERIZED INTEGRAL INEQUALITIES AND THEIR APPLICATIONS

被引:30
作者
Du, Tingsong [1 ]
Luo, Chunyan [1 ]
Yu, Bo [1 ]
机构
[1] China Three Gorges Univ, Dept Math, Coll Sci, Yichang 443002, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2021年 / 15卷 / 01期
基金
中国国家自然科学基金;
关键词
Quantum integrals; s-(alpha; m)-convexity; Hermite-Hadamard's inequality; Simpson's inequality; HERMITE-HADAMARD INEQUALITY; FEJER TYPE INEQUALITIES; CONVEX-FUNCTIONS; SIMPSON TYPE; BOUNDS; M)-CONVEX; PREINVEX; (S;
D O I
10.7153/jmi-2021-15-16
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper aims to study the parameterized inequalities of Hadamard-Simpson type for quantum integrals. By employing a quantum integral identity of multi-parameter, we establish novel inequalities fora class of q-differentiable mappings, which are related to s-(alpha, m)-convex mappings. Moreover, we acquire estimation-type results by considering the boundedness and the Lipschitz condition. As applications, we present two illustrative examples and several quantum integral inequalities for the special means.
引用
收藏
页码:201 / 228
页数:28
相关论文
共 54 条
[11]   New Quantum Hermite-Hadamard Inequalities Utilizing Harmonic Convexity of the Functions [J].
Bin-Mohsin, Bandar ;
Awan, Muhammad Uzair ;
Noor, Muhammad Aslam ;
Riahi, Latifa ;
Noor, Khalida Inayat ;
Almutairi, Bander .
IEEE ACCESS, 2019, 7 :20479-20483
[12]  
Breckner W.W., 1978, Publ. Inst. Math. (Beograd) (N.S.), V23, P13
[13]  
Chen FX, 2016, J COMPUT ANAL APPL, V21, P417
[14]   Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals [J].
Chen, Hua ;
Katugampola, Udita N. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) :1274-1291
[15]  
Dragomir S.S., 1999, DEMONSTR MATH, V32, P687, DOI [10.1515/dema-1999-0403, DOI 10.1515/DEMA-1999-0403, DOI 10.1515/dema-1999-0403]
[16]   Jensen's and Hermite-Hadamard's Type Inequalities for Lower and Strongly Convex Functions on Normed Spaces [J].
Dragomir, Silvestru Sever ;
Nikodem, Kazimierz .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (05) :1337-1349
[17]   Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula [J].
Dragomir, SS ;
Agarwal, RP .
APPLIED MATHEMATICS LETTERS, 1998, 11 (05) :91-95
[18]   Properties and integral inequalities of Hadamard-Simpson type for the generalized (s,m)-preinvex functions [J].
Du, Ting-Song ;
Liao, Jia-Gen ;
Li, Yu-Jiao .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05) :3112-3126
[19]   CERTAIN INTEGRAL INEQUALITIES CONSIDERING GENERALIZED m-CONVEXITY ON FRACTAL SETS AND THEIR APPLICATIONS [J].
Du, Tingsong ;
Wang, Hao ;
Khan, Muhammad Adil ;
Zhang, Yao .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (07)
[20]   Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m,h)-preinvexity [J].
Du, Tingsong ;
Awan, Muhammad Uzair ;
Kashuri, Artion ;
Zhao, Shasha .
APPLICABLE ANALYSIS, 2021, 100 (03) :642-662