Image Retrieval System based on a Binary Auto-Encoder and a Convolutional Neural Network

被引:6
作者
Ferreyra-Ramirez, Andres [1 ]
Rodriguez-Martinez, Eduardo [1 ]
Aviles-Cruz, Carlos [1 ]
Lopez-Saca, Fidel [2 ]
机构
[1] Univ Autonoma Metropolitana, Unidad Azcapotzalco, Dept Elect, Av San Pablo 180, Mexico City, DF, Mexico
[2] Univ Autonoma Metropolitana Azcapotzalco, Div Ciencias Basica & Ingn, Ciencias Comp, Mexico City, DF, Mexico
关键词
Binary autoencoder; CBIR; hash; convolutional neural networks;
D O I
10.1109/TLA.2020.9398634
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The amount of image content on the Internet has increased dramatically in recent years; its precise search and retrieval is a challenge at present. The methods that have shown high efficiency are those based on convolution neural networks (CNN) and, particularly, binary coding methods based on hashing functions. This article presents a new image retrieval scheme based on attributes from a CNN, an efficient low-dimensional binary auto-encoder, and, finally, a near-neighbor retrieval stage. The proposed methodology was tested with two image datasets CIFAR-10 and MNIST. The results are compared with existing methods in the literature.
引用
收藏
页码:1925 / 1932
页数:8
相关论文
共 25 条
  • [1] Asery R., 2017, IMAGE RETRIEVAL TECH
  • [2] Face Classification by Local Texture Analysis through CBIR and SURF Points
    Benavides, C.
    Villegas, J.
    Roman, G.
    Aviles, C.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2016, 14 (05) : 2418 - 2424
  • [3] Carreira-Perpiñán MA, 2015, PROC CVPR IEEE, P557, DOI 10.1109/CVPR.2015.7298654
  • [4] Binary Pattern Descriptors for Scene Classification
    Cervantes, Salvador
    Mexicano, Adriana
    Cervantes, Jose-Antonio
    Rodriguez, Ricardo
    Fuentes-Pacheco, Jorge
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2020, 18 (01) : 83 - 91
  • [5] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [6] Garg M., 2019, R I MED J
  • [7] Ghosh Neha, 2018, Proceedings of International Conference on Recent Advancement on Computer and Communication. ICRAC 2017. Lecture Notes in Networks and Systems (LNNS 34), P305, DOI 10.1007/978-981-10-8198-9_32
  • [8] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [9] Deep Constrained Siamese Hash Coding Network and Load-Balanced Locality-Sensitive Hashing for Near Duplicate Image Detection
    Hu, Weiming
    Fan, Yabo
    Xing, Junliang
    Sun, Liang
    Cai, Zhaoquan
    Maybank, Stephen
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (09) : 4452 - 4464
  • [10] Krizhevsky Alex, 2009, LEARNING MULTIPLE LA