Plasmonic and silicon spherical nanoparticle antireflective coatings

被引:118
作者
Baryshnikova, K. V. [1 ]
Petrov, M. I. [1 ,2 ]
Babicheva, V. E. [1 ,3 ]
Belov, P. A. [1 ]
机构
[1] ITMO Univ, Kronverkskiy 49, St Petersburg 197101, Russia
[2] St Petersburg Acad Univ RAS, Khlopina 8-3, St Petersburg 194021, Russia
[3] Georgia State Univ, Ctr Nanoopt, POB 3965, Atlanta, GA 30302 USA
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
ATOMIC-LAYER DEPOSITION; SOLAR-CELLS; SILVER NANOPARTICLES; DIELECTRIC FUNCTIONS; SURFACE PASSIVATION; OPTICAL-PROPERTIES; LIGHT-SCATTERING; SI; OXIDATION; SPECTROSCOPY;
D O I
10.1038/srep22136
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric-and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes.
引用
收藏
页数:11
相关论文
共 60 条
  • [1] Overview on SiN surface passivation of crystalline silicon solar cells
    Aberle, AG
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2001, 65 (1-4) : 239 - 248
  • [2] Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles?
    Akimov, Yu A.
    Koh, W. S.
    Sian, S. Y.
    Ren, S.
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (07)
  • [3] Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes
    Akimov, Yu. A.
    Koh, W. S.
    Ostrikov, K.
    [J]. OPTICS EXPRESS, 2009, 17 (12): : 10195 - 10205
  • [4] All-dielectric reciprocal bianisotropic nanoparticles
    Alaee, Rasoul
    Albooyeh, Mohammad
    Rahimzadegan, Aso
    Mirmoosa, Mohammad S.
    Kivshar, Yuri S.
    Rockstuhl, Carsten
    [J]. PHYSICAL REVIEW B, 2015, 92 (24):
  • [5] Substrate-induced bianisotropy in plasmonic grids
    Albooyeh, M.
    Simovski, C. R.
    [J]. JOURNAL OF OPTICS, 2011, 13 (10)
  • [6] Albooyeh M., 2011, Metamaterials, V5, P178, DOI [DOI 10.1016/J.METMAT.2011.08.002, DOI 10.1016/j.metmat.2011.08.002]
  • [7] DIELECTRIC FUNCTIONS AND OPTICAL-PARAMETERS OF SI, GE, GAP, GAAS, GASB, INP, INAS, AND INSB FROM 1.5 TO 6.0 EV
    ASPNES, DE
    STUDNA, AA
    [J]. PHYSICAL REVIEW B, 1983, 27 (02) : 985 - 1009
  • [8] Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
  • [9] Nanostructural antireflecting coatings: Classification analysis (A review)
    Baryshnikova, K. V.
    Kadochkin, A. S.
    Shalin, A. S.
    [J]. OPTICS AND SPECTROSCOPY, 2015, 119 (03) : 343 - 355
  • [10] Mie resonance-enhanced light absorption in periodic silicon nanopillar arrays
    Bezares, Francisco J.
    Long, James P.
    Glembocki, Orest J.
    Guo, Junpeng
    Rendell, Ronald W.
    Kasica, Richard
    Shirey, Loretta
    Owrutsky, Jeffrey C.
    Caldwell, Joshua D.
    [J]. OPTICS EXPRESS, 2013, 21 (23): : 27587 - 27601