Cattail fiber-derived hierarchical porous carbon materials for high-performance supercapacitors

被引:30
|
作者
Song, Ge-Ge [1 ]
Yang, Jie [1 ]
Liu, Ke-Xin [1 ]
Qin, Zao [1 ]
Zheng, Xiu-Cheng [1 ,2 ]
机构
[1] Zhengzhou Univ, Coll Chem, Green Catalysis Ctr, Zhengzhou 450001, Peoples R China
[2] Nankai Univ, Coll Chem, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Cattail fibers; Potassium carbonate; Chemical activation; Hierarchical porous carbon; Supercapacitive performance; CAPACITANCE; NANOTUBES; WASTE; OXIDE; HUSK; NAOH;
D O I
10.1016/j.diamond.2020.108162
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Biomass-derived porous carbon materials are very promising in the fields of energy storage and conversion, owing to their fascinating features, such as superior renewability, low cost and environmental friendliness. Correspondingly, developing a safe and energy effective strategy for fabricating advanced carbon from biomass has drawn tremendous attention. In the present work, cattail fiber-derived porous carbon is prepared with an impregnation-single stage calcination method by using K2CO3 as the activating agent. The dosage of K2CO3 and calcination temperature are optimized according to the supercapacitive performance of the corresponding carbon materials. The optimal CPC-2-600, which is fabricated with a mass ratio of 2:1 for K2CO3 to cattail fibers and calcined at 600 degrees C, possesses much larger specific surface area and more abundant micropores and mesopores than the pristine carbon fabricated without using K2CO3 (denoted as CPC-0-600), leading to an improved supercapacitive behavior. As the electrode material for the three-electrode supercapacitors, CPC-2-600 displays a specific capacitance of 273.8 F g(-1) at 1.0 A g(-1) in 6.0 M KOH solution, as well superior rate capability. Moreover, the CPC-2-600-based symmetrical configuration delivers an energy density of 27.44 Wh kg(-1) at 400 W kg(-1). Even the power density is up to 8000 W kg(-1), the energy density is still maintained as high as 16.67 Wh kg(-1), which is much superior to CPC-0-600. Also, the symmetrical configuration exhibits good cycling stability. This work offers a hierarchical porous carbon from cattail fibers for high-performance supercapacitors. Moreover, the mild, effective and low-cost fabrication strategy is also suitable for preparing other biomass-based carbon, which is promising in heterogeneous catalysis, energy storage and conversion devices, and so on.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Hierarchical porous carbon materials synthesized from the castor oil/MgO solids for high-performance supercapacitors
    Sun, Yue
    Zhang, Mingyang
    Tan, Shengnan
    Song, Rongjun
    NANOTECHNOLOGY, 2021, 32 (44)
  • [22] Synthesis and electrochemical performance of high surface area hierarchical porous carbon with ultrahigh mesoporosity for high-performance supercapacitors
    Ma, Chang
    Xu, Jiankang
    Fan, Qingchao
    Shi, Jingli
    Song, Yan
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2019, 23 (07) : 2153 - 2163
  • [23] Hierarchical porous carbon derived from coal and biomass for high performance supercapacitors
    Zhang, Xiaoyun
    Sun, Bingkang
    Fan, Xing
    Liang, Peng
    Zhao, Guoming
    Saikia, Binoy K.
    Wei, Xianyong
    FUEL, 2022, 311
  • [24] Tailoring hierarchically porous structure of biomass-derived carbon for high-performance supercapacitors
    Sun, Zhe
    Zhang, Miao
    Yin, Hui
    Hu, Qi
    Krishnan, Sarathkumar
    Huang, Zhanhua
    Qi, Houjuan
    Wang, Xiaolei
    RENEWABLE ENERGY, 2023, 219
  • [25] Synthesis of three-dimensional hierarchical porous carbon for high-performance supercapacitors
    Wang Yang
    Wu Yang
    Lina Kong
    Ailing Song
    Xiujuan Qin
    Ionics, 2018, 24 : 3133 - 3141
  • [26] Hierarchical Porous Carbon Spheres from Low-Density Polyethylene for High-Performance Supercapacitors
    Zhang, Hua
    Zhou, Xiao-Li
    Shao, Li-Ming
    Lu, Fan
    He, Pin-Jing
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (04): : 3801 - 3810
  • [27] Sodium lignosulfonate-derived ONS-doped hierarchical porous carbon for high-performance DSSC counter electrodes
    Ling, Yi-Kai
    Li, Jing-zhe
    Zhu, Tian
    Wang, Jin-hui
    Wang, Qian
    Li, Yi-jing
    Nong, Guang-zai
    ORGANIC ELECTRONICS, 2024, 127
  • [28] Silica-Confined Activation for Biomass-Derived Porous Carbon Materials for High-Performance Supercapacitors
    Du, Juan
    Lv, Haijun
    Zhang, Yue
    Chen, Aibing
    CHEMELECTROCHEM, 2021, 8 (11) : 2028 - 2033
  • [29] Lamellar hierarchical lignin-derived porous carbon activating the capacitive property of polyaniline for high-performance supercapacitors
    Fu, Fangbao
    Wang, Huan
    Yang, Dongjie
    Qiu, Xueqing
    Li, Zhixian
    Qin, Yanlin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 617 : 694 - 703
  • [30] Soybean Root-Derived Hierarchical Porous Carbon as Electrode Material for High-Performance Supercapacitors in Ionic Liquids
    Guo, Nannan
    Li, Min
    Wang, Yong
    Sun, Xingkai
    Wang, Feng
    Yang, Ru
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (49) : 33626 - 33634