Large deviations for stochastic generalized porous media equations

被引:35
作者
Roeckner, Michael
Wang, Feng-Yu [1 ]
Wu, Liming
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[3] Univ Clermont Ferrand, Lab Math Appl, CNRS, UMR 6620, F-63177 Clermont Ferrand, France
基金
中国国家自然科学基金;
关键词
stochastic porous medium equation; large deviation principle;
D O I
10.1016/j.spa.2006.05.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The large deviation principle is established for the distributions of a class of generalized stochastic porous media equations for both small noise and short time. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1677 / 1689
页数:13
相关论文
共 19 条
[1]  
[Anonymous], 1992, ENCY MATH ITS APPL
[2]  
[Anonymous], 2011, APPL MATH
[3]  
ARONSON DG, 1986, LECT NOTES MATH, V1224, P1
[4]   LARGE TIME BEHAVIOR OF SOLUTIONS OF THE POROUS-MEDIUM EQUATION IN BOUNDED DOMAINS [J].
ARONSON, DG ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1981, 39 (03) :378-412
[5]  
BARBU V, WEAK SOLUTION STOCHA
[6]  
BOGACHEV V. I., 2004, Dokl. Akad. Nauk., V396, P7
[7]   Large deviations for a Burgers'-type SPDE [J].
Cardon-Weber, C .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 84 (01) :53-70
[8]  
Cerrai S, 2004, ANN PROBAB, V32, P1100
[9]   Strong solutions of stochastic generalized porous media equations:: Existence, uniqueness, and ergodicity [J].
Da Prato, G ;
Röckner, M ;
Rozovskii, BL ;
Wang, FY .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (02) :277-291
[10]   Weak solutions to stochastic porous media equations [J].
DA Prato, G ;
Röckner, M .
JOURNAL OF EVOLUTION EQUATIONS, 2004, 4 (02) :249-271