Graphene/graphene oxide and polyvinylidene fluoride polymer ferroelectric composites for multifunctional applications

被引:15
作者
Bystrov, V. S. [1 ]
Bdikin, I. K. [2 ,3 ,4 ]
Silibin, M. V. [2 ]
Karpinsky, D. V. [2 ,5 ]
Kopyl, S. A. [6 ,7 ]
Goncalves, G. [3 ,4 ]
Sapronova, A. V. [8 ]
Kuznetsova, T. [9 ]
Bystrova, V. V. [10 ]
机构
[1] RAS, Inst Math Problems Biol, Keldysh Inst Appl Math, Pushchino, Moscow Region, Russia
[2] Natl Res Univ Elect Technol MIET, Moscow, Russia
[3] Univ Aveiro, Dept Mech Engn, Aveiro, Portugal
[4] Univ Aveiro, TEMA, Aveiro, Portugal
[5] NAS Belarus, Sci Pract Mat Res Ctr, Minsk, BELARUS
[6] Univ Aveiro, CICECO, Aveiro, Portugal
[7] Univ Aveiro, Dept Phys, Aveiro, Portugal
[8] Univ Bergen, UniResearch AS, Bergen, Norway
[9] Univ Bergen, Bergen, Norway
[10] RAS, Shmidt Inst Phys Earth, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Ferroelectric polymers; piezoelectrics; molecular modeling; graphene/graphene oxide; composites; piezoresponse force microscopy; gas-hydrates; GRAPHENE OXIDE; NANOCOMPOSITES; PVDF; BIOFERROELECTRICITY; MEMBRANE; GLYCINE; GO;
D O I
10.1080/00150193.2017.1295745
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We perform computational molecular modeling of graphene/graphene oxide (G/GO) and polyvinylidene fluoride (PVDF) ferroelectric polymer composite nanostructures, using semi-empirical quantum approximation PM3 in HyperChem. Piezoelectric properties of these nanostructures are analyzed in comparison with experimental data obtained for poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE)-GO thin films. Modeling shows qualitative agreement of properties and lowering of piezoelectric coefficient d(33eff) values under influence of G/GO layers. Modeling of GO-methane-hydrates nanostructures based on hexagonal ice model shows that after relaxation the system keeps a stable deformed state. This can serve for gas-hydrates storage and separation. Modeled composites could be used as multifunctional molecular units.
引用
收藏
页码:124 / 142
页数:19
相关论文
共 53 条
[1]   Measurement of the microwave effective permittivity in tensile-strained polyvinylidene difluoride trifluoroethylene filled with graphene [J].
Adohi, B. J. P. ;
Laur, V. ;
Haidar, B. ;
Brosseau, C. .
APPLIED PHYSICS LETTERS, 2014, 104 (08)
[2]   Preparation and Properties of β-Phase Graphene Oxide/PVDF Composite Films [J].
An, Ningli ;
Liu, Shaolong ;
Fang, Changqing ;
Yu, Ruien ;
Zhou, Xing ;
Cheng, Youliang .
JOURNAL OF APPLIED POLYMER SCIENCE, 2015, 132 (10)
[3]  
[Anonymous], 2002, HYP PROF 7 51 TOOLS
[4]  
[Anonymous], 2010, HYP PROF 7 51 TOOLS
[5]   Graphene-P(VDF-TrFE) Multilayer Film for Flexible Applications [J].
Bae, Sang-Hoon ;
Kahya, Orhan ;
Sharma, Bhupendra K. ;
Kwon, Junggou ;
Cho, Hyoung J. ;
Ozyilmaz, Barbaros ;
Ahn, Jong-Hyun .
ACS NANO, 2013, 7 (04) :3130-3138
[6]   Electromechanical Imaging and Spectroscopy of Ferroelectric and Piezoelectric Materials: State of the Art and Prospects for the Future [J].
Balke, Nina ;
Bdikin, Igor ;
Kalinin, Sergei V. ;
Kholkin, Andrei L. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2009, 92 (08) :1629-1647
[7]  
Blinov L. M., 2000, Physics-Uspekhi, V43, P243, DOI 10.1070/PU2000v043n03ABEH000639
[8]   Radial distribution function analysis of the structure of activated carbons [J].
Burian, A ;
Ratuszna, A ;
Dore, JC ;
Howells, SW .
CARBON, 1998, 36 (11) :1613-1621
[9]   Nanoscale polarization patterning of ferroelectric Langmuir-Blodgett P(VDF-TrFE) films [J].
Bystrov, V. S. ;
Bdikin, I. K. ;
Kiselev, D. A. ;
Yudin, S. ;
Fridkin, V. M. ;
Kholkin, A. L. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (15) :4571-4577
[10]   Glycine nanostructures and domains in beta-glycine: computational modeling and PFM observations [J].
Bystrov, V. S. ;
Seyedhosseini, E. ;
Bdikin, I. K. ;
Kopyl, S. ;
Kholkin, A. L. ;
Vasilev, S. G. ;
Zelenovskiy, P. S. ;
Vasileva, D. S. ;
Shur, V. Ya. .
FERROELECTRICS, 2016, 496 (01) :28-45