A Systematic Study of Vinyl Ether-Based Poly(Ethylene Oxide) Side-Chain Polymer Electrolytes

被引:29
作者
Butzelaar, Andreas J. [1 ]
Liu, Kun L. [2 ]
Roering, Philipp [2 ]
Brunklaus, Gunther [2 ,3 ]
Winter, Martin [2 ,3 ]
Theato, Patrick [1 ,4 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Chem Technol & Polymer Chem ITCP, D-76131 Karlsruhe, Germany
[2] Forschungszentrum Julich GmbH, IEK 12, Helmholtz Inst Munster, D-48149 Munster, Germany
[3] Univ Munster, Inst Phys Chem, MEET Battery Res Ctr, D-48149 Munster, Germany
[4] Karlsruhe Inst Technol KIT, Soft Matter Synth Lab, IBG 3, Inst Biol Interfaces 3, D-76344 Eggenstein Leopoldshafen, Germany
关键词
polymer electrolyte; PEO architectures; vinyl ether with PEO side chains; grafting-to; thermal and electrochemical properties; Li+ conductivity;
D O I
10.1021/acsapm.0c01398
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Herein, we report on the synthesis of a systematic library of vinyl ether-based poly(ethylene oxide) (PEO) side-chain copolymers in order to reduce the crystallization of PEO. The influence of different grafted PEO side chain lengths, the grafting density, and the [Li+]:[EO] ratio after mixing with LiTFSI on the glass transition temperature (T-g), the crystallinity, and the resulting ionic conductivity was examined. Copolymers bearing longer PEO side chains and higher grafting densities show higher crystallization tendencies while their T-g is reduced at the same time. Furthermore, the addition of LiTFSI reduces crystallization but increases T-g. Because these effects are directly impacting the ionic conductivity, we demonstrate that the different parameters need to be carefully adjusted in order to balance their influence. In this way, a fundamental view that shows the potential of PEO side-chain copolymers for their applications as polymer electrolytes is provided.
引用
收藏
页码:1573 / 1582
页数:10
相关论文
共 45 条
[1]   LIVING CATIONIC POLYMERIZATION OF VINYL MONOMERS BY ORGANO-ALUMINUM HALIDES .3. LIVING POLYMERIZATION OF ISOBUTYL VINYL ETHER BY ETALCL2 IN THE PRESENCE OF ESTER ADDITIVES [J].
AOSHIMA, S ;
HIGASHIMURA, T .
MACROMOLECULES, 1989, 22 (03) :1009-1013
[2]   ROLE OF ADDED LEWIS BASE AND ALKYLALUMINUM HALIDE ON LIVING CATIONIC POLYMERIZATION OF VINYL ETHER [J].
AOSHIMA, S ;
ONISHI, H ;
KAMIYA, M ;
SHACHI, K ;
KOBAYASHI, E .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 1994, 32 (05) :879-887
[3]   A conceptual review on polymer electrolytes and ion transport models [J].
Aziz, Shujahadeen B. ;
Woo, Thompson J. ;
Kadir, M. F. Z. ;
Ahmed, Hameed M. .
JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES, 2018, 3 (01) :1-17
[4]   Ionic conductivity of plasticized (PEO)-LiCF3SO3 electrolytes [J].
Bandara, LRAK ;
Dissanayake, MAKL ;
Mellander, BE .
ELECTROCHIMICA ACTA, 1998, 43 (10-11) :1447-1451
[5]  
Batteries LMP®, BLUE SOLUTIONS
[6]   The Development and Future of Lithium Ion Batteries [J].
Blomgren, George E. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (01) :A5019-A5025
[7]   Decoupling segmental relaxation and ionic conductivity for lithium-ion polymer electrolytes [J].
Bresser, Dominic ;
Lyonnard, Sandrine ;
Iojoiu, Cristina ;
Picard, Lionel ;
Passerini, Stefano .
MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2019, 4 (04) :779-792
[8]   Atomistic Description of Ionic Diffusion in PEO-LiTFSI: Effect of Temperature, Molecular Weight, and Ionic Concentration [J].
Brooks, Daniel J. ;
Merinov, Boris V. ;
Goddard, William A., III ;
Kozinsky, Boris ;
Mailoa, Jonathan .
MACROMOLECULES, 2018, 51 (21) :8987-8995
[9]   Study of segmental dynamics and ion transport in polymer-ceramic composite electrolytes by quasi-elastic neutron scattering [J].
Chen, X. Chelsea ;
Sacci, Robert L. ;
Osti, Naresh C. ;
Tyagi, Madhusudan ;
Wang, Yangyang ;
Palmer, Max J. ;
Dudney, Nancy J. .
MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2019, 4 (02) :379-385
[10]   THERMAL AND ELECTRICAL CHARACTERIZATION OF PEO-BASED POLYMER ELECTROLYTES CONTAINING MIXED CO(II) AND LI(I) [J].
CHOWDARI, BVR ;
HUQ, R ;
FARRINGTON, GC .
SOLID STATE IONICS, 1992, 57 (1-2) :49-58