G Protein-Coupled Receptors Contain Two Conserved Packing Clusters

被引:16
作者
Sanchez-Reyes, Omar B. [1 ]
Cooke, Aidan L. G. [2 ]
Tranter, Dale B. [2 ]
Rashid, Dawood [1 ]
Eilers, Markus [1 ]
Reeves, Philip J. [2 ]
Smith, Steven O. [1 ]
机构
[1] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA
[2] Univ Essex, Sch Biol Sci, Colchester, Essex, England
基金
美国国家卫生研究院;
关键词
STRUCTURAL INSIGHTS; CRYSTAL-STRUCTURE; TRANSMEMBRANE HELICES; RHODOPSIN ACTIVATION; RETINITIS-PIGMENTOSA; ADRENERGIC-RECEPTOR; MEMBRANE-PROTEINS; BOVINE RHODOPSIN; DYNAMIC PROCESS; ACTIVE STATE;
D O I
10.1016/j.bpj.2017.04.051
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
G protein-coupled receptors (GPCRs) have evolved a seven-transmembrane helix framework that is responsive to a wide range of extracellular signals. An analysis of the interior packing of family A GPCR crystal structures reveals two clusters of highly packed residues that facilitate tight transmembrane helix association. These clusters are centered on amino acid positions 2.47 and 4.53, which are highly conserved as alanine and serine, respectively. Ala2.47 mediates the interaction between helices H1 and H2, while Ser4.53 mediates the interaction between helices H3 and H4. The helical interfaces outside of these clusters are lined with residues that are more loosely packed, a structural feature that facilitates motion of helices H5, H6, and H7, which is required for receptor activation. Mutation of the conserved small side chain at position 4.53 within packing cluster 2 is shown to disrupt the structure of the visual receptor rhodopsin, whereas sites in packing cluster 1 (e.g., positions 1.46 and 2.47) are more tolerant to mutation but affect the overall stability of the protein. These findings reveal a common structural scaffold of GPCRs that is important for receptor folding and activation.
引用
收藏
页码:2315 / 2326
页数:12
相关论文
共 63 条
[1]   Structural and functional roles of small group-conserved amino acids present on helix-H7 in the β2-adrenergic receptor [J].
Arakawa, Makoto ;
Chakraborty, Raja ;
Upadhyaya, Jasbir ;
Eilers, Markus ;
Reeves, Philip J. ;
Smith, Steven O. ;
Chelikani, Prashen .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2011, 1808 (04) :1170-1178
[2]  
Ballesteros J. A., 1995, Neuroscience Methods, P366, DOI [DOI 10.1016/S1043-9471, DOI 10.1016/S1043-9471(05)80049-7]
[3]  
BARAK LS, 1994, J BIOL CHEM, V269, P2790
[4]   The High-Resolution Structure of Activated Opsin Reveals a Conserved Solvent Network in the Transmembrane Region Essential for Activation [J].
Blankenship, Elise ;
Vahedi-Faridi, Ardeschir ;
Lodowski, David T. .
STRUCTURE, 2015, 23 (12) :2358-2364
[5]   Conformational Dynamics of Single G Protein-Coupled Receptors in Solution [J].
Bockenhauer, Samuel ;
Fuerstenberg, Alexandre ;
Yao, Xiao Jie ;
Kobilka, Brian K. ;
Moerner, W. E. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (45) :13328-13338
[6]   Structural and functional role of helices I and II in rhodopsin - A novel interplay evidenced by mutations at Gly-51 and Gly-89 in the transmembrane domain [J].
Bosch, L ;
Ramon, E ;
del Valle, LJ ;
Garriga, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (22) :20203-20209
[7]   Crystal structure of metarhodopsin II [J].
Choe, Hui-Woog ;
Kim, Yong Ju ;
Park, Jung Hee ;
Morizumi, Takefumi ;
Pai, Emil F. ;
Krauss, Norbert ;
Hofmann, Klaus Peter ;
Scheerer, Patrick ;
Ernst, Oliver P. .
NATURE, 2011, 471 (7340) :651-U137
[8]  
Choma C, 2000, NAT STRUCT BIOL, V7, P161
[9]   The crystal structure of a hyperthermophilic archaeal TATA-box binding protein [J].
DeDecker, BS ;
OBrien, R ;
Fleming, PJ ;
Geiger, JH ;
Jackson, SP ;
Sigler, PB .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 264 (05) :1072-1084
[10]   Relevance of rhodopsin studies for GPCR activation [J].
Deupi, Xavier .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2014, 1837 (05) :674-682