Sparse graphical models via calibrated concave convex procedure with application to fMRI data

被引:2
作者
Son, Sungtaek [1 ,2 ]
Park, Cheolwoo [3 ]
Jeon, Yongho [1 ]
机构
[1] Yonsei Univ, Dept Appl Stat, Seoul, South Korea
[2] Celltrion Inc, Incheon, South Korea
[3] Univ Georgia, Dept Stat, Athens, GA 30602 USA
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
Inverse covariance matrix; partial correlation; SCAD; CCCP; fMRI data; NONCONCAVE PENALIZED LIKELIHOOD; ADAPTIVE LASSO; SELECTION; CONNECTIVITY; REGRESSION; NETWORK;
D O I
10.1080/02664763.2019.1663158
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a calibrated concave convex procedure (calibrated CCCP) for high-dimensional graphical model selection. The calibrated CCCP approach for the smoothly clipped absolute deviation (SCAD) penalty is known to be path-consistent with probability converging to one in linear regression models. We implement the calibrated CCCP method with the SCAD penalty for the graphical model selection. We use a quadratic objective function for undirected Gaussian graphical models and adopt the SCAD penalty for sparse estimation. For the tuning procedure, we propose to use columnwise tuning on the quadratic objective function adjusted for test data. In a simulation study, we compare the performance of the proposed method with two existing graphical model estimators for high-dimensional data in terms of matrix error norms and support recovery rate. We also compare the bias and the variance of the estimated matrices. Then, we apply the method to functional magnetic resonance imaging (fMRI) data of an attention deficit hyperactivity disorders (ADHD) patient.
引用
收藏
页码:997 / 1016
页数:20
相关论文
共 25 条
[11]   A Nonparametric Graphical Model for Functional Data With Application to Brain Networks Based on fMRI [J].
Li, Bing ;
Solea, Eftychia .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (524) :1637-1655
[12]   A Spectral Graphical Model Approach for Learning Brain Connectivity Network of Children's Narrative Comprehension [J].
Lin, Xiaodong ;
Meng, Xiangxiang ;
Karunanayaka, Prasanna ;
Holland, Scott K. .
BRAIN CONNECTIVITY, 2011, 1 (05) :389-400
[13]   Discriminant analysis through a semiparametric model [J].
Lin, Y ;
Jeon, Y .
BIOMETRIKA, 2003, 90 (02) :379-392
[14]  
Liu H, 2009, J MACH LEARN RES, V10, P2295
[15]   Fast and adaptive sparse precision matrix estimation in high dimensions [J].
Liu, Weidong ;
Luo, Xi .
JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 135 :153-162
[16]  
Ng Bernard, 2013, Inf Process Med Imaging, V23, P256, DOI 10.1007/978-3-642-38868-2_22
[17]   A FOCUSED INFORMATION CRITERION FOR GRAPHICAL MODELS IN FMRI CONNECTIVITY WITH HIGH-DIMENSIONAL DATA [J].
Pircalabelu, Eugen ;
Claeskens, Gerda ;
Jahfari, Sara ;
Waldorp, Lourens J. .
ANNALS OF APPLIED STATISTICS, 2015, 9 (04) :2179-2214
[18]   Positive definite estimators of large covariance matrices [J].
Rothman, Adam J. .
BIOMETRIKA, 2012, 99 (03) :733-740
[19]   GAUSSIAN MARKOV DISTRIBUTIONS OVER FINITE GRAPHS [J].
SPEED, TP ;
KIIVERI, HT .
ANNALS OF STATISTICS, 1986, 14 (01) :138-150