Sparse graphical models via calibrated concave convex procedure with application to fMRI data

被引:2
作者
Son, Sungtaek [1 ,2 ]
Park, Cheolwoo [3 ]
Jeon, Yongho [1 ]
机构
[1] Yonsei Univ, Dept Appl Stat, Seoul, South Korea
[2] Celltrion Inc, Incheon, South Korea
[3] Univ Georgia, Dept Stat, Athens, GA 30602 USA
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
Inverse covariance matrix; partial correlation; SCAD; CCCP; fMRI data; NONCONCAVE PENALIZED LIKELIHOOD; ADAPTIVE LASSO; SELECTION; CONNECTIVITY; REGRESSION; NETWORK;
D O I
10.1080/02664763.2019.1663158
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a calibrated concave convex procedure (calibrated CCCP) for high-dimensional graphical model selection. The calibrated CCCP approach for the smoothly clipped absolute deviation (SCAD) penalty is known to be path-consistent with probability converging to one in linear regression models. We implement the calibrated CCCP method with the SCAD penalty for the graphical model selection. We use a quadratic objective function for undirected Gaussian graphical models and adopt the SCAD penalty for sparse estimation. For the tuning procedure, we propose to use columnwise tuning on the quadratic objective function adjusted for test data. In a simulation study, we compare the performance of the proposed method with two existing graphical model estimators for high-dimensional data in terms of matrix error norms and support recovery rate. We also compare the bias and the variance of the estimated matrices. Then, we apply the method to functional magnetic resonance imaging (fMRI) data of an attention deficit hyperactivity disorders (ADHD) patient.
引用
收藏
页码:997 / 1016
页数:20
相关论文
共 25 条
  • [1] Statistical mechanics of complex networks
    Albert, R
    Barabási, AL
    [J]. REVIEWS OF MODERN PHYSICS, 2002, 74 (01) : 47 - 97
  • [2] COVARIANCE REGULARIZATION BY THRESHOLDING
    Bickel, Peter J.
    Levina, Elizaveta
    [J]. ANNALS OF STATISTICS, 2008, 36 (06) : 2577 - 2604
  • [3] Brain Graphs: Graphical Models of the Human Brain Connectome
    Bullmore, Edward T.
    Bassett, Danielle S.
    [J]. ANNUAL REVIEW OF CLINICAL PSYCHOLOGY, 2011, 7 : 113 - 140
  • [4] A Constrained l1 Minimization Approach to Sparse Precision Matrix Estimation
    Cai, Tony
    Liu, Weidong
    Luo, Xi
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (494) : 594 - 607
  • [5] COVARIANCE SELECTION
    DEMPSTER, AP
    [J]. BIOMETRICS, 1972, 28 (01) : 157 - &
  • [6] NETWORK EXPLORATION VIA THE ADAPTIVE LASSO AND SCAD PENALTIES
    Fan, Jianqing
    Feng, Yang
    Wu, Yichao
    [J]. ANNALS OF APPLIED STATISTICS, 2009, 3 (02) : 521 - 541
  • [7] Variable selection via nonconcave penalized likelihood and its oracle properties
    Fan, JQ
    Li, RZ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) : 1348 - 1360
  • [8] Sparse inverse covariance estimation with the graphical lasso
    Friedman, Jerome
    Hastie, Trevor
    Tibshirani, Robert
    [J]. BIOSTATISTICS, 2008, 9 (03) : 432 - 441
  • [9] Smoothly Clipped Absolute Deviation on High Dimensions
    Kim, Yongdai
    Choi, Hosik
    Oh, Hee-Seok
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (484) : 1665 - 1673
  • [10] Koller D., 2009, Probabilistic Graphical Models: Principles and Techniques