Natural Intrinsic Geometrical Symmetries

被引:46
作者
Haesen, Stefan [1 ]
Verstraelen, Leopold [2 ]
机构
[1] Simon Stevin Inst Geometry, NL-2042 NN Zandvoort, Netherlands
[2] Katholieke Univ Leuven, Dept Math, B-3000 Louvain, Belgium
关键词
parallel transport; holonomy; spaces of constant curvature; pseudo-symmetry; PSEUDO-PARALLEL SUBMANIFOLDS; PSEUDOSYMMETRIC SPACE-TIMES; MINIMAL-SURFACES; SCALAR CURVATURE; DDVV CONJECTURE; CLASSIFICATION; MANIFOLDS; EQUALITY; THEOREM; FORMS;
D O I
10.3842/SIGMA.2009.086
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A proposal is made for what could well be the most natural symmetrical Riemannian spaces which are homogeneous but not isotropic, i.e. of what could well be the most natural class of symmetrical spaces beyond the spaces of constant Riemannian curvature, that is, beyond the spaces which are homogeneous and isotropic, or, still, the spaces which satisfy the axiom of free mobility.
引用
收藏
页数:15
相关论文
共 71 条
[1]  
[Anonymous], 1987, B I MATH ACAD SINICA
[2]  
[Anonymous], 1994, Chin. J. Math
[3]  
[Anonymous], 1985, Geom. Dedicata, DOI DOI 10.1007/BF00233102
[4]  
[Anonymous], 1989, Chinese J. Math.
[5]  
[Anonymous], 1967, Spaces of constant curvature
[6]  
[Anonymous], 1991, Bol. Soc. Bras. Math. (N.S.)
[7]  
[Anonymous], 1997, Riemannian Geometry
[8]  
Asperti AC, 2002, ADV GEOM, V2, P57
[9]  
Belkhelfa M, 2006, KYUNGPOOK MATH J, V46, P367
[10]  
Berger M., 2003, A Panoramic View of Riemannian Geometry