Vessel Extraction in X-Ray Angiograms Using Deep Learning

被引:0
|
作者
Nasr-Esfahani, E. [1 ]
Samavi, S. [1 ,2 ]
Karimi, N. [1 ]
Soroushmehr, S. M. R. [3 ,4 ]
Ward, K. [3 ,4 ]
Jafari, M. H. [1 ]
Felfeliyan, B. [1 ]
Nallamothu, B. [5 ]
Najarian, K. [2 ,3 ,6 ]
机构
[1] Isfahan Univ Technol, Dept Elect & Comp Engn, Esfahan 8415683111, Iran
[2] Univ Michigan, Dept Emergency Med, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Michigan Ctr Integrat Res Crit Care, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Emergency Med Dept, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Internal Med, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
来源
2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2016年
关键词
Angiography; vessel segmentation; deep learning; convolutional neural networks; SEGMENTATION;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Coronary artery disease (CAD) is the most common type of heart disease which is the leading cause of death all over the world. X-ray angiography is currently the gold standard imaging technique for CAD diagnosis. These images usually suffer from low quality and presence of noise. Therefore, vessel enhancement and vessel segmentation play important roles in CAD diagnosis. In this paper a deep learning approach using convolutional neural networks (CNN) is proposed for detecting vessel regions in angiography images. Initially, an input angiogram is preprocessed to enhance its contrast. Afterward, the image is evaluated using patches of pixels and the network determines the vessel and background regions. A set of 1,040,000 patches is used in order to train the deep CNN. Experimental results on angiography images of a dataset show that our proposed method has a superior performance in extraction of vessel regions.
引用
收藏
页码:643 / 646
页数:4
相关论文
共 50 条
  • [41] Gender Detection from Spine X-ray Images Using Deep Learning
    Xue, Zhiyun
    Rajaraman, Sivaramakrishnan
    Long, Rodney
    Antani, Sameer
    Thoma, George R.
    2018 31ST IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS 2018), 2018, : 54 - 58
  • [42] Automated Bone Cancer Detection Using Deep Learning on X-Ray Images
    Dalai, Sasanka Sekhar
    Sahu, Bharat Jyoti Ranjan
    Rautaray, Jyotirmayee
    Khan, M. Ijaz
    Jabr, Bander A.
    Ali, Yasser A.
    SURGICAL INNOVATION, 2025, 32 (02) : 94 - 108
  • [43] Limited angle tomography for transmission X-ray microscopy using deep learning
    Huang, Yixing
    Wang, Shengxiang
    Guan, Yong
    Maier, Andreas
    JOURNAL OF SYNCHROTRON RADIATION, 2020, 27 : 477 - 485
  • [44] Bone age estimation using deep learning and hand X-ray images
    Jang Hyung Lee
    Young Jae Kim
    Kwang Gi Kim
    Biomedical Engineering Letters, 2020, 10 : 323 - 331
  • [45] Development of a Method for Estimating the Angle of Lumbar Spine X-ray Images Using Deep Learning with Pseudo X-ray Images Generated from Computed Tomography
    Moriya, Ryuma
    Yoshimura, Takaaki
    Tang, Minghui
    Ichikawa, Shota
    Sugimori, Hiroyuki
    APPLIED SCIENCES-BASEL, 2024, 14 (09):
  • [46] DEEP LEARNING CLASSIFICATION OF CHEST X-RAY IMAGES
    Majdi, Mohammad S.
    Salman, Khalil N.
    Morris, Michael F.
    Merchant, Nirav C.
    Rodriguez, Jeffrey J.
    2020 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION (SSIAI 2020), 2020, : 116 - 119
  • [47] Classification of Arecanut X-Ray Images for Quality Assessment Using Adaptive Genetic Algorithm and Deep Learning
    Naik, Praveen M.
    Rudra, Bhawana
    IEEE ACCESS, 2023, 11 : 127619 - 127636
  • [48] COVID-19 classification in X-ray/CT images using pretrained deep learning schemes
    Appavu, Narenthira Kumar
    Babu, Nelson Kennedy C.
    Kadry, Seifedine
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (35) : 83157 - 83177
  • [49] Automated correlative segmentation of large Transmission X-ray Microscopy (TXM) tomograms using deep learning
    Kaira, C. Shashank
    Yang, Xiaogang
    De Andrade, Vincent
    De Carlo, Francesco
    Scullin, William
    Gursoy, Doga
    Chawla, Nikhilesh
    MATERIALS CHARACTERIZATION, 2018, 142 : 203 - 210
  • [50] An efficient deep learning-based framework for tuberculosis detection using chest X-ray images
    Iqbal, Ahmed
    Usman, Muhammad
    Ahmed, Zohair
    TUBERCULOSIS, 2022, 136