Vessel Extraction in X-Ray Angiograms Using Deep Learning

被引:0
|
作者
Nasr-Esfahani, E. [1 ]
Samavi, S. [1 ,2 ]
Karimi, N. [1 ]
Soroushmehr, S. M. R. [3 ,4 ]
Ward, K. [3 ,4 ]
Jafari, M. H. [1 ]
Felfeliyan, B. [1 ]
Nallamothu, B. [5 ]
Najarian, K. [2 ,3 ,6 ]
机构
[1] Isfahan Univ Technol, Dept Elect & Comp Engn, Esfahan 8415683111, Iran
[2] Univ Michigan, Dept Emergency Med, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Michigan Ctr Integrat Res Crit Care, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Emergency Med Dept, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Internal Med, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
来源
2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2016年
关键词
Angiography; vessel segmentation; deep learning; convolutional neural networks; SEGMENTATION;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Coronary artery disease (CAD) is the most common type of heart disease which is the leading cause of death all over the world. X-ray angiography is currently the gold standard imaging technique for CAD diagnosis. These images usually suffer from low quality and presence of noise. Therefore, vessel enhancement and vessel segmentation play important roles in CAD diagnosis. In this paper a deep learning approach using convolutional neural networks (CNN) is proposed for detecting vessel regions in angiography images. Initially, an input angiogram is preprocessed to enhance its contrast. Afterward, the image is evaluated using patches of pixels and the network determines the vessel and background regions. A set of 1,040,000 patches is used in order to train the deep CNN. Experimental results on angiography images of a dataset show that our proposed method has a superior performance in extraction of vessel regions.
引用
收藏
页码:643 / 646
页数:4
相关论文
共 50 条
  • [21] Combination of deep learning with representation learning in X-ray prohibited item detection
    Rao, Jianghao
    Qin, Peng
    Zhou, Gaofan
    Li, Meihui
    Zhang, Jianlin
    Bao, Qiliang
    Peng, Zhenming
    FRONTIERS IN PHYSICS, 2023, 11
  • [22] Automatic Identification of Bioprostheses on X-ray Angiographic Sequences of Transcatheter Aortic Valve Implantation Procedures Using Deep Learning
    Busto, Laura
    Veiga, Cesar
    Gonzalez-Novoa, Jose A.
    Loureiro-Ga, Marcos
    Jimenez, Victor
    Baz, Jose Antonio
    iniguez, Andres
    DIAGNOSTICS, 2022, 12 (02)
  • [23] Super-Resolved Segmentation of X-ray Images of Carbonate Rocks Using Deep Learning
    Naif J. Alqahtani
    Yufu Niu
    Ying Da Wang
    Traiwit Chung
    Zakhar Lanetc
    Aleksandr Zhuravljov
    Ryan T. Armstrong
    Peyman Mostaghimi
    Transport in Porous Media, 2022, 143 : 497 - 525
  • [24] Super-Resolved Segmentation of X-ray Images of Carbonate Rocks Using Deep Learning
    Alqahtani, Naif J.
    Niu, Yufu
    Da Wang, Ying
    Chung, Traiwit
    Lanetc, Zakhar
    Zhuravljov, Aleksandr
    Armstrong, Ryan T.
    Mostaghimi, Peyman
    TRANSPORT IN POROUS MEDIA, 2022, 143 (02) : 497 - 525
  • [25] Paediatric Bone Age Assessment from Hand X-ray Using Deep Learning Approach
    Zerari, Achouak
    Djedidi, Oussama
    Kahloul, Laid
    Carlo, Romeo
    Remadna, Ikram
    ADVANCES IN COMPUTING SYSTEMS AND APPLICATIONS, 2022, 513 : 373 - 383
  • [26] Diagnosis of COVID-19 from X-ray images using deep learning techniques
    Alghamdi, Maha Mesfer Meshref
    Dahab, Mohammed Yehia Hassan
    COGENT ENGINEERING, 2022, 9 (01):
  • [27] Segmentation Performance Comparison Considering Regional Characteristics in Chest X-ray Using Deep Learning
    Lee, Hyo Min
    Kim, Young Jae
    Kim, Kwang Gi
    SENSORS, 2022, 22 (09)
  • [28] Automatic Cerebral Vessel Extraction in TOF-MRA Using Deep Learning
    de Vos, V.
    Timmins, K. M.
    van der Schaaf, I. C.
    Ruigrok, Y.
    Velthuis, B. K.
    Kuijf, H. J.
    MEDICAL IMAGING 2021: IMAGE PROCESSING, 2021, 11596
  • [29] A Lightweight Network for Accurate Coronary Artery Segmentation Using X-Ray Angiograms
    Tao, Xingxiang
    Dang, Hao
    Zhou, Xiaoguang
    Xu, Xiangdong
    Xiong, Danqun
    FRONTIERS IN PUBLIC HEALTH, 2022, 10
  • [30] Chest X-ray analysis empowered with deep learning: A systematic review
    Meedeniya, Dulani
    Kumarasinghe, Hashara
    Kolonne, Shammi
    Fernando, Chamodi
    De la Torre Diez, Isabel
    Marques, Goncalo
    APPLIED SOFT COMPUTING, 2022, 126