Vessel Extraction in X-Ray Angiograms Using Deep Learning

被引:0
作者
Nasr-Esfahani, E. [1 ]
Samavi, S. [1 ,2 ]
Karimi, N. [1 ]
Soroushmehr, S. M. R. [3 ,4 ]
Ward, K. [3 ,4 ]
Jafari, M. H. [1 ]
Felfeliyan, B. [1 ]
Nallamothu, B. [5 ]
Najarian, K. [2 ,3 ,6 ]
机构
[1] Isfahan Univ Technol, Dept Elect & Comp Engn, Esfahan 8415683111, Iran
[2] Univ Michigan, Dept Emergency Med, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Michigan Ctr Integrat Res Crit Care, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Emergency Med Dept, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Internal Med, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
来源
2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2016年
关键词
Angiography; vessel segmentation; deep learning; convolutional neural networks; SEGMENTATION;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Coronary artery disease (CAD) is the most common type of heart disease which is the leading cause of death all over the world. X-ray angiography is currently the gold standard imaging technique for CAD diagnosis. These images usually suffer from low quality and presence of noise. Therefore, vessel enhancement and vessel segmentation play important roles in CAD diagnosis. In this paper a deep learning approach using convolutional neural networks (CNN) is proposed for detecting vessel regions in angiography images. Initially, an input angiogram is preprocessed to enhance its contrast. Afterward, the image is evaluated using patches of pixels and the network determines the vessel and background regions. A set of 1,040,000 patches is used in order to train the deep CNN. Experimental results on angiography images of a dataset show that our proposed method has a superior performance in extraction of vessel regions.
引用
收藏
页码:643 / 646
页数:4
相关论文
共 12 条
[1]  
[Anonymous], 2015, ONCOTARGETS THERAPY
[2]   Image enhancement using multi scale image features extracted by top-hat transform [J].
Bai, Xiangzhi ;
Zhou, Fugen ;
Xue, Bindang .
OPTICS AND LASER TECHNOLOGY, 2012, 44 (02) :328-336
[3]   Tubular Structure Segmentation Based on Minimal Path Method and Anisotropic Enhancement [J].
Benmansour, Fethallah ;
Cohen, Laurent D. .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2011, 92 (02) :192-210
[4]   A Higher-Order Tensor Vessel Tractography for Segmentation of Vascular Structures [J].
Cetin, Suheyla ;
Unal, Gozde .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) :2172-2185
[5]  
Dehkordi M. Taghizadeh, 2014, COMPUTER VISION IET, V8, P161
[6]  
Fazlali HR, 2015, IEEE IMAGE PROC, P1493, DOI 10.1109/ICIP.2015.7351049
[7]  
Frangi AF, 1998, LECT NOTES COMPUT SC, V1496, P130, DOI 10.1007/BFb0056195
[8]  
Khan MAU, 2004, 2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL V, PROCEEDINGS, P441
[9]  
Melinscak M., 2015, INT C COMP VIS THEOR
[10]  
Shoujun Z., 2010, BIOMEDICAL ENG ONLIN, V9, P1