Vessel Extraction in X-Ray Angiograms Using Deep Learning

被引:0
|
作者
Nasr-Esfahani, E. [1 ]
Samavi, S. [1 ,2 ]
Karimi, N. [1 ]
Soroushmehr, S. M. R. [3 ,4 ]
Ward, K. [3 ,4 ]
Jafari, M. H. [1 ]
Felfeliyan, B. [1 ]
Nallamothu, B. [5 ]
Najarian, K. [2 ,3 ,6 ]
机构
[1] Isfahan Univ Technol, Dept Elect & Comp Engn, Esfahan 8415683111, Iran
[2] Univ Michigan, Dept Emergency Med, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Michigan Ctr Integrat Res Crit Care, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Emergency Med Dept, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Internal Med, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
来源
2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2016年
关键词
Angiography; vessel segmentation; deep learning; convolutional neural networks; SEGMENTATION;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Coronary artery disease (CAD) is the most common type of heart disease which is the leading cause of death all over the world. X-ray angiography is currently the gold standard imaging technique for CAD diagnosis. These images usually suffer from low quality and presence of noise. Therefore, vessel enhancement and vessel segmentation play important roles in CAD diagnosis. In this paper a deep learning approach using convolutional neural networks (CNN) is proposed for detecting vessel regions in angiography images. Initially, an input angiogram is preprocessed to enhance its contrast. Afterward, the image is evaluated using patches of pixels and the network determines the vessel and background regions. A set of 1,040,000 patches is used in order to train the deep CNN. Experimental results on angiography images of a dataset show that our proposed method has a superior performance in extraction of vessel regions.
引用
收藏
页码:643 / 646
页数:4
相关论文
共 50 条
  • [1] Vessel Segmentation of Coronary X-ray Angiograms
    Tache, Irina Andra
    2016 20TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2016, : 727 - 731
  • [2] Accurate vessel extraction via tensor completion of background layer in X-ray coronary angiograms
    Qin, Binjie
    Jin, Mingxin
    Hao, Dongdong
    Lv, Yisong
    Liu, Qiegen
    Zhu, Yueqi
    Ding, Song
    Zhao, Jun
    Fei, Baowei
    PATTERN RECOGNITION, 2019, 87 : 38 - 54
  • [3] Deep Learning for Coronary Artery Segmentation in X-ray Angiograms Using a Patch-based Training
    Cervantes-Sanchez, Fernando
    Cruz-Aceves, Ivan
    Hernandez-Aguirre, Arturo
    Alicia Hernandez-Gonzalez, Martha
    Eduardo Solorio-Meza, Sergio
    16TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2020, 11583
  • [4] Using Deep Learning on X-ray Orthogonal Coronary Angiograms for Quantitative Coronary Analysis
    Busto, Laura
    Gonzalez-Novoa, Jose A.
    Juan-Salvadores, Pablo
    Jimenez, Victor
    Iniguez, Andres
    Veiga, Cesar
    MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, MIUA 2022, 2022, 13413 : 869 - 881
  • [5] EXTRACTION OF CORONARY ARTERIAL TREE USING CINE X-RAY ANGIOGRAMS
    Lin, Chih-Yang
    Ching, Yu-Tai
    BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2005, 17 (03): : 111 - 120
  • [6] Vessel Layer Separation in X-ray Angiograms with Fully Convolutional Network
    Hao, Haidong
    Ma, Hua
    van Walsum, Theo
    MEDICAL IMAGING 2018: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2018, 10576
  • [7] X-ray scatterometry using deep learning
    Liu, Shuo
    Yang, Tianjuan
    Zhang, Jiahao
    Ma, Jianyuan
    Liu, Shiyuan
    Chen, Xiuguo
    TENTH INTERNATIONAL SYMPOSIUM ON PRECISION MECHANICAL MEASUREMENTS, 2021, 12059
  • [8] Automatic extraction of coronary arteries using deep learning in invasive coronary angiograms
    Meng, Yinghui
    Du, Zhenglong
    Zhao, Chen
    Dong, Minghao
    Pienta, Drew
    Tang, Jinshan
    Zhou, Weihua
    TECHNOLOGY AND HEALTH CARE, 2023, 31 (06) : 2303 - 2317
  • [9] Vessels Enhancement in X-ray Angiograms
    Tache, Irina Andra
    2015 E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2015,
  • [10] Detection of COVID-19 Using Deep Learning on X-Ray Images
    Alotaibi, Munif
    Alotaibi, Bandar
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 29 (03) : 885 - 898