The complexity of ferromagnetic ising with local fields

被引:66
作者
Goldberg, Leslie Ann [1 ]
Jerrum, Mark
机构
[1] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
[2] Univ Edinburgh, Div Informat, JCMB, Edinburgh EH9 3JZ, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1017/S096354830600767X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the complexity of approximating the partition function of the ferromagnetic Ising model with varying interaction energies and local external magnetic fields. Jerrum and Sinclair provided a fully polynomial randomized approximation scheme for the case in which the system is consistent in the sense that the local external fields all favour the same spin. We characterize the complexity of the general problem by showing that it is equivalent in complexity to the problem of approximately counting independent sets in bipartite graphs, thus it is complete in a logically defined subclass of #P previously studied by Dyer, Goldberg, Greenhill and Jerrum. By contrast, we show that the corresponding computational task for the q-state Potts model with local external magnetic fields and q > 2 is complete for all of #P with respect to approximation-preserving reductions.
引用
收藏
页码:43 / 61
页数:19
相关论文
共 16 条
  • [1] Chaos in the random field Ising model
    Alava, M
    Rieger, H
    [J]. PHYSICAL REVIEW E, 1998, 58 (04): : 4284 - 4287
  • [2] Baxter R J., 1982, EXACTLY SOLVED MODEL
  • [3] Gibbs states of graphical representations of the Potts model with external fields
    Biskup, M
    Borgs, C
    Chayes, JT
    Kotecky, R
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (03) : 1170 - 1210
  • [4] THE COMPLEXITY OF MULTITERMINAL CUTS
    DAHLHAUS, E
    JOHNSON, DS
    PAPADIMITRIOOU, CH
    SEYMOUR, PD
    YANNAKAKIS, M
    [J]. SIAM JOURNAL ON COMPUTING, 1994, 23 (04) : 864 - 894
  • [5] DIETZFELBINGER M, 2003, B EUROPEAN ASS THEOR, V80
  • [6] A guide to exact simulation
    Dimakos, XK
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2001, 69 (01) : 27 - 48
  • [7] The relative complexity of approximate counting problems
    Dyer, M
    Goldberg, LA
    Greenhill, C
    Jerrum, M
    [J]. ALGORITHMICA, 2004, 38 (03) : 471 - 500
  • [8] Garey M. R., 1976, Theoretical Computer Science, V1, P237, DOI 10.1016/0304-3975(76)90059-1
  • [9] The computational complexity of two-state spin systems
    Goldberg, LA
    Jerrum, M
    Paterson, M
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2003, 23 (02) : 133 - 154
  • [10] Randomly sampling molecules
    Goldberg, LA
    Jerrum, M
    [J]. SIAM JOURNAL ON COMPUTING, 2000, 29 (03) : 834 - 853