The asymptotic behavior of the solutions of a Volterra difference equation

被引:8
作者
Medina, R
机构
[1] Departamento de Ciencias Exactas, Universidad de Los Lagos, Osorno
关键词
sum-difference equation; Volterra difference equation; discrete inequality; asymptotic behavior;
D O I
10.1016/S0898-1221(97)00095-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of the present paper is to study the asymptotic behavior of the sum-difference equation of Volterra-type Delta(a(n) Delta x(n)) + b(n) Delta x(n) + c(n)x(n) = r(n) l=0 Sigma n-1 g(l)x(l) + h(n,x(n),Delta x(n)), as n --> infinity.
引用
收藏
页码:19 / 26
页数:8
相关论文
共 13 条
[1]  
[Anonymous], 1992, AEQUATIONES MATH U W
[2]  
Bainov D., 1992, Integral Inequalities and Applications. Mathematics and Its Applications
[3]   STABILITY ANALYSIS OF DISCRETE RECURRENCE EQUATIONS OF VOLTERRA TYPE WITH DEGENERATE KERNELS [J].
CRISCI, MR ;
JACKIEWICZ, Z ;
RUSSO, E ;
VECCHIO, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (01) :49-62
[4]  
DROSDOWICZ A, 1987, FASCICULI MATH, V17, P87
[5]  
ELAYDI S, 4 TRIN U
[6]  
ELAYDI S, IN PRESS STABILITY V
[7]   ASYMPTOTIC-BEHAVIOR OF CERTAIN 2ND ORDER INTEGRO-DIFFERENTIAL EQUATIONS [J].
GRACE, SR ;
LALLI, BS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 76 (01) :84-90
[8]  
KELLEY WG, 1990, DIFFERENCE EQUATIONS
[9]  
Lakshmikantham V., 1988, Theory of Difference Equations : Numerical Methods and Applications
[10]   ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF 2ND-ORDER NONLINEAR DIFFERENCE-EQUATIONS [J].
MEDINA, R ;
PINTO, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (02) :187-195