Prediction of histone post-translational modifications using deep learning

被引:11
作者
Baisya, Dipankar Ranjan [1 ]
Lonardi, Stefano [1 ]
机构
[1] Univ Calif Riverside, Dept Comp Sci & Engn, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
DNA; VARIANTS;
D O I
10.1093/bioinformatics/btaa1075
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Histone post-translational modifications (PTMs) are involved in a variety of essential regulatory processes in the cell, including transcription control. Recent studies have shown that histone PTMs can be accurately predicted from the knowledge of transcription factor binding or DNase hypersensitivity data. Similarly, it has been shown that one can predict PTMs from the underlying DNA primary sequence. Results: In this study, we introduce a deep learning architecture called DeepPTM for predicting histone PTMs from transcription factor binding data and the primary DNA sequence. Extensive experimental results show that our deep learning model outperforms the prediction accuracy of the model proposed in Benveniste et al. (PNAS 2014) and DeepHistone (BMC Genomics 2019). The competitive advantage of our framework lies in the synergistic use of deep learning combined with an effective pre-processing step. Our classification framework has also enabled the discovery that the knowledge of a small subset of transcription factors (which are histone-PTM and cell-type-specific) can provide almost the same prediction accuracy that can be obtained using all the transcription factors data. Availabilityand implementation: https://github.com/dDipankar/DeepPTM. Contact: stelo@cs.ucr.edu Supplementary information: Supplementary data are available at Bioinformatics online.
引用
收藏
页码:5610 / 5617
页数:8
相关论文
共 25 条
[1]   Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning [J].
Alipanahi, Babak ;
Delong, Andrew ;
Weirauch, Matthew T. ;
Frey, Brendan J. .
NATURE BIOTECHNOLOGY, 2015, 33 (08) :831-+
[2]   DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning [J].
Angermueller, Christof ;
Lee, Heather J. ;
Reik, Wolf ;
Stegle, Oliver .
GENOME BIOLOGY, 2017, 18
[3]  
[Anonymous], A20012 U TAMP
[4]   High-resolution profiling of histone methylations in the human genome [J].
Barski, Artern ;
Cuddapah, Suresh ;
Cui, Kairong ;
Roh, Tae-Young ;
Schones, Dustin E. ;
Wang, Zhibin ;
Wei, Gang ;
Chepelev, Iouri ;
Zhao, Keji .
CELL, 2007, 129 (04) :823-837
[5]   Transcription factor binding predicts histone modifications in human cell lines [J].
Benveniste, Dan ;
Sonntag, Hans-Joachim ;
Sanguinetti, Guido ;
Sproul, Duncan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (37) :13367-13372
[6]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]   Modeling gene expression using chromatin features in various cellular contexts [J].
Dong, Xianjun ;
Greven, Melissa C. ;
Kundaje, Anshul ;
Djebali, Sarah ;
Brown, James B. ;
Cheng, Chao ;
Gingeras, Thomas R. ;
Gerstein, Mark ;
Guigo, Roderic ;
Birney, Ewan ;
Weng, Zhiping .
GENOME BIOLOGY, 2012, 13 (09)
[9]   The ENCODE (ENCyclopedia of DNA elements) Project [J].
Feingold, EA ;
Good, PJ ;
Guyer, MS ;
Kamholz, S ;
Liefer, L ;
Wetterstrand, K ;
Collins, FS ;
Gingeras, TR ;
Kampa, D ;
Sekinger, EA ;
Cheng, J ;
Hirsch, H ;
Ghosh, S ;
Zhu, Z ;
Pate, S ;
Piccolboni, A ;
Yang, A ;
Tammana, H ;
Bekiranov, S ;
Kapranov, P ;
Harrison, R ;
Church, G ;
Struhl, K ;
Ren, B ;
Kim, TH ;
Barrera, LO ;
Qu, C ;
Van Calcar, S ;
Luna, R ;
Glass, CK ;
Rosenfeld, MG ;
Guigo, R ;
Antonarakis, SE ;
Birney, E ;
Brent, M ;
Pachter, L ;
Reymond, A ;
Dermitzakis, ET ;
Dewey, C ;
Keefe, D ;
Denoeud, F ;
Lagarde, J ;
Ashurst, J ;
Hubbard, T ;
Wesselink, JJ ;
Castelo, R ;
Eyras, E ;
Myers, RM ;
Sidow, A ;
Batzoglou, S .
SCIENCE, 2004, 306 (5696) :636-640
[10]  
Glorot X., 2010, P 13 INT C ART INT S, P249, DOI DOI 10.1109/LGRS.2016.2565705