Quench dynamics near a quantum critical point

被引:177
作者
De Grandi, C. [1 ]
Gritsev, V. [2 ]
Polkovnikov, A. [1 ]
机构
[1] Boston Univ, Dept Phys, Boston, MA 02215 USA
[2] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland
基金
美国国家科学基金会;
关键词
BOSE-EINSTEIN CONDENSATE; PHASE-TRANSITIONS; SYSTEMS; GASES;
D O I
10.1103/PhysRevB.81.012303
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the dynamical response of a system to a sudden change of the tuning parameter lambda starting (or ending) at the quantum critical point. In particular, we analyze the scaling of the excitation probability, number of excited quasiparticles, heat and entropy with the quench amplitude, and the system size. We extend the analysis to quenches with arbitrary power law dependence on time of the tuning parameter, showing a close connection between the scaling behavior of these quantities with the singularities of the adiabatic susceptibilities of order m at the quantum critical point, where m is related to the power of the quench. Precisely for sudden quenches, the relevant susceptibility of the second order coincides with the fidelity susceptibility. We discuss the generalization of the scaling laws to the finite-temperature quenches and show that the statistics of the low-energy excitations becomes important. We illustrate the relevance of those results for cold-atom experiments.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Resummation of fluctuations near ferromagnetic quantum critical points
    Pedder, C. J.
    Krueger, F.
    Green, A. G.
    PHYSICAL REVIEW B, 2013, 88 (16)
  • [32] Exact results for the criticality of quench dynamics in quantum Ising models
    Li, Ying
    Huo, MingXia
    Song, Zhi
    PHYSICAL REVIEW B, 2009, 80 (05):
  • [33] Geometric quench and nonequilibrium dynamics of fractional quantum Hall states
    Liu, Zhao
    Gromov, Andrey
    Papic, Zlatko
    PHYSICAL REVIEW B, 2018, 98 (15)
  • [34] Quantum phase transition and quench dynamics in the anisotropic Rabi model
    Shen, Li-Tuo
    Yang, Zhen-Biao
    Wu, Huai-Zhi
    Zheng, Shi-Biao
    PHYSICAL REVIEW A, 2017, 95 (01)
  • [35] Quantum phases and dynamics of geometric phase in a quantum spin chain under linear quench
    Sarkar, S.
    Basu, B.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (12)
  • [36] van der Waals Universality near a Quantum Tricritical Point
    Mestrom, P. M. A.
    Colussi, V. E.
    Secker, T.
    Groeneveld, G. P.
    Kokkelmans, S. J. J. M. F.
    PHYSICAL REVIEW LETTERS, 2020, 124 (14)
  • [37] Exact results on the quench dynamics of the entanglement entropy in the toric code
    Rahmani, Armin
    Chamon, Claudio
    PHYSICAL REVIEW B, 2010, 82 (13):
  • [38] DISSECTING AND TESTING COLLECTIVE AND TOPOLOGICAL SCENARIOS FOR THE QUANTUM CRITICAL POINT
    Clark, J. W.
    Khodel, V. A.
    Zverev, M. V.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (25-26): : 4901 - 4914
  • [39] Quantum Quench and Nonequilibrium Dynamics in Lattice-Confined Spinor Condensates
    Chen, Z.
    Tang, T.
    Austin, J.
    Shaw, Z.
    Zhao, L.
    Liu, Y.
    PHYSICAL REVIEW LETTERS, 2019, 123 (11)
  • [40] Quench dynamics in topologically nontrivial quantum many-body systems
    Nair, Sarika Sasidharan
    Zlabys, Giedrius
    He, Wen-Bin
    Fogarty, Thomas
    Busch, Thomas
    PHYSICAL REVIEW A, 2025, 111 (03)