Two-step synthesis of nanocomposite LiFePO4/C cathode materials for lithium ion batteries

被引:8
|
作者
Ding, Juan [1 ]
Su, Zhi [1 ]
Zhang, Yanhui [1 ]
机构
[1] Xinjiang Normal Univ, Coll Chem & Chem Engn, Urumqi 830054, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
SOL-GEL METHOD; ELECTROCHEMICAL PERFORMANCE; POSITIVE-ELECTRODE; PHOSPHO-OLIVINES; IRON PHOSPHATE; COMPOSITE; VANADIUM;
D O I
10.1039/c5nj02626a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A two-step method is developed for the preparation of nanocomposite LiFePO4/C cathode materials for lithium ion batteries. Water is used as a solvent in the sintering process, with Fe(CH3COO)(2)center dot 4H(2)O and H3PO4 as the raw materials and citric acid as the carbon source. The synthesis of the resultant grain-size precursor is then performed at 700 degrees C for 1 h in order to obtain a lithiation reaction precursor via ball milling. The crystal structure and morphology of the samples are characterized using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The electrochemical properties of the material are assessed using charge-discharge and cyclic voltammetry testing. Based on the test results, the discharge capacity of LiFePO4/C reaches 163.3 mA h g(-1) in the first cycle, which is close to the theoretical value (170 mA h g(-1)). After 50 charge-discharge cycles, a capacity of 154.4 mA h g(-1) is obtained. The capacity retention ratio is 94.5%.
引用
收藏
页码:1742 / 1746
页数:5
相关论文
共 50 条
  • [31] Characterization and Electrochemical Performance of ZnO Modified LiFePO4/C Cathode Materials for Lithium-ion Batteries
    Liu Shu-Xin
    Yin Heng-Bo
    Wang Hai-Bin
    He Ji-Chuan
    Wang Hong
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2014, 33 (03) : 353 - 360
  • [32] Synthesis of LiFePO4/C cathode material for lithium-ion battery
    Tong Hui
    Hu Guo-Hua
    Hu Guo-Rong
    Peng Zhong-Dong
    Zhang Xin-Long
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2006, 22 (12) : 2159 - 2164
  • [33] Characterization of LiFePO4 Cathode by Addition of Graphene for Lithium Ion Batteries
    Honggowiranto, Wagiyo
    Kartini, Evvy
    6TH NANOSCIENCE AND NANOTECHNOLOGY SYMPOSIUM (NNS2015), 2016, 1710
  • [34] Characterization and Electrochemical Performance of ZnO Modified LiFePO4/C Cathode Materials for Lithium-ion Batteries
    刘树信
    殷恒波
    王海滨
    何冀川
    王洪
    Chinese Journal of Structural Chemistry, 2014, 33 (03) : 353 - 360
  • [35] Morphology-controlled solvothermal synthesis of LiFePO4 as a cathode material for lithium-ion batteries
    Yang, Shiliu
    Zhou, Xufeng
    Zhang, Jiangang
    Liu, Zhaoping
    JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (37) : 8086 - 8091
  • [36] Preparation of V-Doped LiFePO4/C as the Optimized Cathode Material for Lithium Ion Batteries
    Sun, Pingping
    Zhang, Haiyang
    Shen, Kai
    Fan, Qi
    Xu, Qingyu
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (04) : 2667 - 2672
  • [37] Effects of vanadium oxide coating on the performance of LiFePO4/C cathode for lithium-ion batteries
    Tao, Yong
    Cao, Yanbing
    Hu, Guorong
    Chen, Pengwei
    Pen, Zhongdong
    Du, Ke
    Jia, Ming
    Huang, Yong
    Xia, Jin
    Li, Luyu
    Xie, Xiaoming
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2019, 23 (07) : 2243 - 2250
  • [38] Polymer-Templated LiFePO4/C Nanonetworks as High-Performance Cathode Materials for Lithium-Ion Batteries
    Fischer, Michael G.
    Hua, Xiao
    Wilts, Bodo D.
    Castillo-Martinez, Elizabeth
    Steiner, Ullrich
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (02) : 1646 - 1653
  • [39] The Recent review of LiFePO4 Cathode Materials for Lithium-ion Battery
    Tang, Zhiyuan
    Wang, Xiaojing
    Yan, Ji
    Ma, Li
    2011 INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND NEURAL COMPUTING (FSNC 2011), VOL VII, 2011, : 515 - 519
  • [40] A review of graphene-decorated LiFePO4 cathode materials for lithium-ion batteries
    Geng, Jing
    Zhang, Shuchao
    Hu, Xixi
    Ling, Wenqin
    Peng, Xiaoxiao
    Zhong, Shenglin
    Liang, Fangan
    Zou, Zhengguang
    IONICS, 2022, 28 (11) : 4899 - 4922