What drives the observed variability of HCN in the troposphere and lower stratosphere?

被引:45
作者
Li, Q. [1 ]
Palmer, P. I. [1 ]
Pumphrey, H. C. [1 ]
Bernath, P. [2 ]
Mahieu, E. [3 ]
机构
[1] Univ Edinburgh, Sch Geosci, Edinburgh, Midlothian, Scotland
[2] Univ York, Dept Chem, York YO10 5DD, N Yorkshire, England
[3] Univ Liege, Inst Astrophys & Geophys, Liege, Belgium
关键词
QUASI-BIENNIAL OSCILLATION; HYDROGEN-CYANIDE HCN; VERTICAL COLUMN ABUNDANCES; INFRARED SOLAR SPECTRA; SPECTROSCOPIC MEASUREMENTS; ATMOSPHERIC CHEMISTRY; SEASONAL-VARIATIONS; NORTHERN JAPAN; TRACE GAS; EMISSIONS;
D O I
10.5194/acp-9-8531-2009
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We use the GEOS-Chem global 3-D chemistry transport model to investigate the relative importance of chemical and physical processes that determine observed variability of hydrogen cyanide (HCN) in the troposphere and lower stratosphere. Consequently, we reconcile ground-based FTIR column measurements of HCN, which show annual and semi-annual variations, with recent space-borne measurements of HCN mixing ratio in the tropical lower stratosphere, which show a large two-year variation. We find that the observed column variability over the ground-based stations is determined by a superposition of HCN from several regional burning sources, with GEOS-Chem reproducing these column data with a positive bias of 5%. GEOS-Chem reproduces the observed HCN mixing ratio from the Microwave Limb Sounder and the Atmospheric Chemistry Experiment satellite instruments with a mean negative bias of 20%, and the observed HCN variability with a mean negative bias of 7%. We show that tropical biomass burning emissions explain most of the observed HCN variations in the upper troposphere and lower stratosphere (UTLS), with the remainder due to atmospheric transport and HCN chemistry. In the mid and upper stratosphere, atmospheric dynamics progressively exerts more influence on HCN variations. The extent of temporal overlap between African and other continental burning seasons is key in establishing the apparent bienniel cycle in the UTLS. Similar analysis of other, shorter-lived trace gases have not observed the transition between annual and bienniel cycles in the UTLS probably because the signal of inter-annual variations from surface emission has been diluted before arriving at the lower stratosphere (LS), due to shorter atmospheric lifetimes.
引用
收藏
页码:8531 / 8543
页数:13
相关论文
共 51 条
[1]   The quasi-biennial oscillation [J].
Baldwin, MP ;
Gray, LJ ;
Dunkerton, TJ ;
Hamilton, K ;
Haynes, PH ;
Randel, WJ ;
Holton, JR ;
Alexander, MJ ;
Hirota, I ;
Horinouchi, T ;
Jones, DBA ;
Kinnersley, JS ;
Marquardt, C ;
Sato, K ;
Takahashi, M .
REVIEWS OF GEOPHYSICS, 2001, 39 (02) :179-229
[2]   New Directions: Acetonitrile in atmospheric and biogeochemical cycles [J].
Bange, HW ;
Williams, J .
ATMOSPHERIC ENVIRONMENT, 2000, 34 (28) :4959-4960
[3]   Atmospheric Chemistry Experiment (ACE):: Mission overview -: art. no. L15S01 [J].
Bernath, PF ;
McElroy, CT ;
Abrams, MC ;
Boone, CD ;
Butler, M ;
Camy-Peyret, C ;
Carleer, M ;
Clerbaux, C ;
Coheur, PF ;
Colin, R ;
DeCola, P ;
Bernath, PF ;
McElroy, CT ;
Abrams, MC ;
Boone, CD ;
Butler, M ;
Camy-Peyret, C ;
Carleer, M ;
Clerbaux, C ;
Coheur, PF ;
Colin, R ;
DeCola, P ;
DeMazière, M ;
Drummond, JR ;
Dufour, D ;
Evans, WFJ ;
Fast, H ;
Fussen, D ;
Gilbert, K ;
Jennings, DE ;
Llewellyn, EJ ;
Lowe, RP ;
Mahieu, E ;
McConnell, JC ;
McHugh, M ;
McLeod, SD ;
Michaud, R ;
Midwinter, C ;
Nassar, R ;
Nichitiu, F ;
Nowlan, C ;
Rinsland, CP ;
Rochon, YJ ;
Rowlands, N ;
Semeniuk, K ;
Simon, P ;
Skelton, R ;
Sloan, JJ ;
Soucy, MA ;
Strong, K .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (15)
[4]   Trace gas and particle emissions from fires in large diameter and belowground biomass fuels [J].
Bertschi, I ;
Yokelson, RJ ;
Ward, DE ;
Babbitt, RE ;
Susott, RA ;
Goode, JG ;
Hao, WM .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D13)
[5]   Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation [J].
Bey, I ;
Jacob, DJ ;
Yantosca, RM ;
Logan, JA ;
Field, BD ;
Fiore, AM ;
Li, QB ;
Liu, HGY ;
Mickley, LJ ;
Schultz, MG .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D19) :23073-23095
[6]   Retrievals for the atmospheric chemistry experiment Fourier-transform spectrometer [J].
Boone, CD ;
Nassar, R ;
Walker, KA ;
Rochon, Y ;
McLeod, SD ;
Rinsland, CP ;
Bernath, PF .
APPLIED OPTICS, 2005, 44 (33) :7218-7231
[7]   IS HYDROGEN-CYANIDE (HCN) A PROGENITOR OF ACETONITRILE (CH3CN) IN THE ATMOSPHERE [J].
BRASSEUR, G ;
ZELLNER, R ;
DERUDDER, A ;
ARIJS, E .
GEOPHYSICAL RESEARCH LETTERS, 1985, 12 (03) :117-120
[8]   THE ATMOSPHERIC CHEMISTRY OF HYDROGEN-CYANIDE (HCN) [J].
CICERONE, RJ ;
ZELLNER, R .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1983, 88 (NC15) :689-696
[9]   Model study of the cross-tropopause transport of biomass burning pollution [J].
Duncan, B. N. ;
Strahan, S. E. ;
Yoshida, Y. ;
Steenrod, S. D. ;
Livesey, N. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (14) :3713-3736
[10]   Variability in surface ozone background over the United States: Implications for air quality policy [J].
Fiore, A ;
Jacob, DJ ;
Liu, H ;
Yantosca, RM ;
Fairlie, TD ;
Li, Q .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D24)